TY - JOUR
T1 - Zinc Methionine Supplementation Impacts Gene and Protein Expression in Calf-Fed Holstein Steers with Minimal Impact on Feedlot Performance
AU - Hergenreder, J. E.
AU - Legako, J. F.
AU - Dinh, T. T.N.
AU - Spivey, K. S.
AU - Baggerman, J. O.
AU - Broadway, P. R.
AU - Beckett, J. L.
AU - Branine, M. E.
AU - Johnson, B. J.
N1 - Publisher Copyright:
© 2015, The Author(s).
PY - 2016/6/1
Y1 - 2016/6/1
N2 - Providing cattle a more bioavailable zinc (Zn) source prior to administering a beta adrenergic agonist (βAA) may enhance the metabolic pool of primary nutrients that will influence the magnitude of the βAA response. Calf-fed Holstein steers were supplemented with a Zn methionine supplement (ZnMet; ZINPRO®; Zinpro Corporation, Eden Prairie, MN) for 115 ± 5 days prior to harvest along with zilpaterol hydrochloride (ZH; Zilmax®; Merck Animal Health, Summit, NJ) for the last 20 days with a 3-day withdrawal to evaluate the effects on growth and carcass performance together with gene and protein expression of skeletal muscle, adipose tissue, and fatty acid composition of polar and neutral lipid depots. Steers (n = 1296; initial weight = 468.5 ± 0.5 kg) were sorted by weight, blocked by harvest date, and randomly assigned to pens (n = 12) and treatments: control (90 ppm Zn from ZnSO4) and ZnMet (Control plus 720 mg Zn from ZnMet/hd/d). There were no differences (P > 0.05) in growth performance or carcass characteristics. The ZnMet-fed cattle had reduced (P < 0.05) abundance of myosin heavy chain (MHC)-IIX, β1-adrenergic receptor (βAR), peroxisome proliferator-activated receptor gamma, and stearoyl-CoA desaturase mRNA in skeletal muscle tissue. The ZnMet cattle had greater (P < 0.05) abundance of MHC-II protein, increased MHC-IIA and IIX cross-sectional areas (P < 0.05), an increased percentage of MHC-I fibers (P < 0.05), and a decreased percentage of MHC-IIX fibers (P < 0.05). The combination of ZnMet and ZH had positive biological effects on musculoskeletal tissue; however, these molecular effects were not significant enough to impact overall feedlot and carcass performance.
AB - Providing cattle a more bioavailable zinc (Zn) source prior to administering a beta adrenergic agonist (βAA) may enhance the metabolic pool of primary nutrients that will influence the magnitude of the βAA response. Calf-fed Holstein steers were supplemented with a Zn methionine supplement (ZnMet; ZINPRO®; Zinpro Corporation, Eden Prairie, MN) for 115 ± 5 days prior to harvest along with zilpaterol hydrochloride (ZH; Zilmax®; Merck Animal Health, Summit, NJ) for the last 20 days with a 3-day withdrawal to evaluate the effects on growth and carcass performance together with gene and protein expression of skeletal muscle, adipose tissue, and fatty acid composition of polar and neutral lipid depots. Steers (n = 1296; initial weight = 468.5 ± 0.5 kg) were sorted by weight, blocked by harvest date, and randomly assigned to pens (n = 12) and treatments: control (90 ppm Zn from ZnSO4) and ZnMet (Control plus 720 mg Zn from ZnMet/hd/d). There were no differences (P > 0.05) in growth performance or carcass characteristics. The ZnMet-fed cattle had reduced (P < 0.05) abundance of myosin heavy chain (MHC)-IIX, β1-adrenergic receptor (βAR), peroxisome proliferator-activated receptor gamma, and stearoyl-CoA desaturase mRNA in skeletal muscle tissue. The ZnMet cattle had greater (P < 0.05) abundance of MHC-II protein, increased MHC-IIA and IIX cross-sectional areas (P < 0.05), an increased percentage of MHC-I fibers (P < 0.05), and a decreased percentage of MHC-IIX fibers (P < 0.05). The combination of ZnMet and ZH had positive biological effects on musculoskeletal tissue; however, these molecular effects were not significant enough to impact overall feedlot and carcass performance.
KW - Myosin heavy chain
KW - Zilpaterol hydrochloride
KW - Zinc methionine
KW - β-Adrenergic receptor
UR - http://www.scopus.com/inward/record.url?scp=84944699022&partnerID=8YFLogxK
U2 - 10.1007/s12011-015-0521-2
DO - 10.1007/s12011-015-0521-2
M3 - Article
C2 - 26446862
AN - SCOPUS:84944699022
SN - 0163-4984
VL - 171
SP - 315
EP - 327
JO - Biological Trace Element Research
JF - Biological Trace Element Research
IS - 2
ER -