Weakly Singular Symmetric Galerkin Boundary Element Method for Fracture Analysis of Three-Dimensional Structures Considering Rotational Inertia and Gravitational Forces

Shuangxin He, Chaoyang Wang, Xuan Zhou, Leiting Dong, Satya N. Atluri

Research output: Contribution to journalArticlepeer-review

Abstract

The Symmetric Galerkin Boundary Element Method is advantageous for the linear elastic fracture and crack-growth analysis of solid structures, because only boundary and crack-surface elements are needed. However, for engineering structures subjected to body forces such as rotational inertia and gravitational loads, additional domain integral terms in the Galerkin boundary integral equation will necessitate meshing of the interior of the domain. In this study, weakly-singular SGBEM for fracture analysis of three-dimensional structures considering rotational inertia and gravitational forces are developed. By using divergence theorem or alternatively the radial integration method, the domain integral terms caused by body forces are transformed into boundary integrals. And due to the weak singularity of the formulated boundary integral equations, a simple Gauss-Legendre quadrature with a few integral points is sufficient for numerically evaluating the SGBEM equations. Some numerical examples are presented to verify this approach and results are compared with benchmark solutions.

Original languageEnglish
JournalCMES - Computer Modeling in Engineering and Sciences
Volume131
Issue number1
DOIs
StatePublished - 2022

Keywords

  • Gravitational force
  • Rotational inertia
  • Stress intensity factor
  • Symmetric Galerkin boundary element method
  • Weak singularity

Fingerprint

Dive into the research topics of 'Weakly Singular Symmetric Galerkin Boundary Element Method for Fracture Analysis of Three-Dimensional Structures Considering Rotational Inertia and Gravitational Forces'. Together they form a unique fingerprint.

Cite this