Water structure and mobility in acrylamide copolymer glycohydrogels with galactose and siloxane pendant groups

April L. Fogel, Ashwin Ravichandran, Sriramvignesh Mani, Bishal Upadhyay, Rajesh Khare, Sarah E. Morgan

Research output: Contribution to journalArticlepeer-review


Glycohydrogels containing 2′-acrylamidoethyl-β-d-galactopyranoside and varying levels of N,N′ methylene bisacrylamide and 3-acrylamidopropyltris(trimethylsiloxy)silane were synthesized to determine the effects of crosslinker and amphipathic balance on equilibrium water content (EWC), bound water population, and hydrogen bonding dynamics at the water–polymer interface. Analogous dimethylacrylamide hydrogels were synthesized for comparison with a system containing lower hydrogen bonding propensity. An approach combining experiment (proton nuclear magnetic resonance, thermogravimetric analysis, differential scanning calorimetry, and dynamic vapor sorption analysis) and molecular dynamics simulations was employed to examine the relationship between bulk hydrogel properties, molecular water mobility, and hydrogen bonding characteristics. It was found that copolymer composition (hydrophobic content) and crosslink concentration in high water content glycohydrogels affect EWC, and by extension, structural water population. The organization of water at the polymer interface is greatly impacted by the surrounding environment, where hindered molecular water mobility promotes water–polymer binding and decreases water–water clustering.

Original languageEnglish
Pages (from-to)584-597
Number of pages14
JournalJournal of Polymer Science, Part B: Polymer Physics
Issue number10
StatePublished - May 15 2019


  • biomaterials
  • differential scanning calorimetry (DSC)
  • diffusion
  • hydrogels
  • molecular dynamics
  • photopolymerization


Dive into the research topics of 'Water structure and mobility in acrylamide copolymer glycohydrogels with galactose and siloxane pendant groups'. Together they form a unique fingerprint.

Cite this