Vulnerability assessment of agricultural production systems to drought stresses using robustness measures

Marangely Gonzalez Cruz, E. Annette Hernandez, Venkatesh Uddameri

Research output: Contribution to journalArticlepeer-review

6 Scopus citations


Intensification of droughts in agricultural areas threaten global food security. The impacts of drought stresses vary widely across a region, not only due to climate variability but also due to heterogeneous soil and groundwater buffering capacities which protect against droughts. An innovative drought vulnerability index was developed by reconciling the negative effects of drought stresses against the robustness offered by hydrologic buffers. Indicators for climate stresses, soil and groundwater buffering capacities were defined using physical principles and integrated using a multi-criteria decision making (MCDM) framework. The framework was applied to delineate drought vulnerability of agricultural production systems and evaluate current cropping choices across the High Plains region of the US that is underlain by the Ogallala Aquifer. Current crop growth choices appeared to be compatible with the intrinsic drought vulnerabilities with cotton and sorghum grown in higher vulnerability areas and corn and soybean produced in areas with lower vulnerability. Nearly 50% of the aquifer region fell in the transition zone exhibiting medium to high vulnerabilities warranting the need for better water management to adapt to a changing climate.

Original languageEnglish
Article number21648
JournalScientific reports
Issue number1
StatePublished - Dec 2021


Dive into the research topics of 'Vulnerability assessment of agricultural production systems to drought stresses using robustness measures'. Together they form a unique fingerprint.

Cite this