Use of the lambda Red recombinase system to produce recombinant prophages carrying antibiotic resistance genes

Ruth Serra-Moreno, Sandra Acosta, Jean Pierre Hernalsteens, Juan Jofre, Maite Muniesa

Research output: Contribution to journalArticlepeer-review

70 Scopus citations

Abstract

Background: The Red recombinase system of bacteriophage lambda has been used to inactivate chromosomal genes in E. coli K-12 through homologous recombination using linear PCR products. The aim of this study was to induce mutations in the genome of some temperate Shiga toxin encoding bacteriophages. When phage genes are in the prophage state, they behave like chromosomal genes. This enables marker genes, such as antibiotic resistance genes, to be incorporated into the stx gene. Once the phages' lytic cycle is activated, recombinant Shiga toxin converted phages are produced. These phages can transfer the marker genes to the bacteria that they infect and convert. As the Red system's effectiveness decreased when used for our purposes, we had to introduce significant variations to the original methods. These modifications included: confirming the stability of the target stx gene increasing the number of cells to be transformed and using a three-step PCR method to produce the amplimer contaning the antibiotic resistance gene. Results: Seven phages carrying two different antibiotic resistance genes were derived from phages that are directly involved in the pathogenesis of Shiga toxin-producing strains, using this modified protocol. Conclusion: This approach facilitates exploration of the transduction processes and is a valuable tool for studying phage-mediated horizontal gene transfer.

Original languageEnglish
Article number31
JournalBMC Molecular Biology
Volume7
DOIs
StatePublished - Sep 19 2006

Fingerprint

Dive into the research topics of 'Use of the lambda Red recombinase system to produce recombinant prophages carrying antibiotic resistance genes'. Together they form a unique fingerprint.

Cite this