Understanding the sources of Caribbean precipitation biases in CMIP3 and CMIP5 simulations

Research output: Contribution to journalArticlepeer-review

31 Scopus citations

Abstract

We assess the ability of Global Climate Models participating in phases 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5) to simulate observed annual precipitation cycles over the Caribbean. Compared to weather station records and gridded observations, we find that both CMIP3 and CMIP5 models can be grouped into three categories: (1) models that correctly simulate a bimodal distribution with two rainfall maxima in May-June and September-October, punctuated by a mid-summer drought (MSD) in July-August; (2) models that reproduce the MSD and the second precipitation maxima only; and (3) models that simulate only one precipitation maxima, beginning in early summer. These categories appear related to model simulation of the North Atlantic Subtropical High (NASH) and sea surface temperature (SST) in the Caribbean Sea and Gulf of Mexico. Specifically, models in category 2 tend to anticipate the westward expansion of the NASH into the Caribbean in early summer. Early onset of NASH results in strong moisture divergence and MSD-like conditions at the time of the May-June observed precipitation maxima. Models in category 3 tend to have cooler SST across the region, particularly over the central Caribbean and the Gulf of Mexico, as well as a weaker Caribbean low-level jet accompanying a weaker NASH. In these models, observed June-like patterns of moisture convergence in the central Caribbean and the Central America and divergence in the east Caribbean and the Gulf of Mexico persist through September. This analysis suggests systematic biases in model structure may be responsible for biases in observed precipitation variability over the Caribbean and more confidence may be placed in the precipitation simulated by the GCMs that are able to correctly simulate seasonal cycles of SST and NASH.

Original languageEnglish
Pages (from-to)3233-3252
Number of pages20
JournalClimate Dynamics
Volume42
Issue number11-12
DOIs
StatePublished - Jun 2014

Keywords

  • Caribbean low-level jet
  • Caribbean precipitation
  • Global climate models
  • Large-scale dynamics
  • North Atlantic subtropical high

Fingerprint Dive into the research topics of 'Understanding the sources of Caribbean precipitation biases in CMIP3 and CMIP5 simulations'. Together they form a unique fingerprint.

Cite this