TY - JOUR
T1 - Understanding Factors of Engineering Student Persistence Using Predictive Modeling
AU - Kelly, Daniel P.
AU - Ernst, Jeremy V.
AU - Clark, Aaron C.
AU - Schettig, Erik
N1 - Funding Information:
This material is based upon work supported by the National Science Foundation under Grant No. 1900348.
Publisher Copyright:
© American Society for Engineering Education, 2021
PY - 2021/7/26
Y1 - 2021/7/26
N2 - Student persistence in higher education is a topic of discussion in the academic literature and within our colleges and universities. This is especially relevant as university programs continue to focus on equity, inclusion, and support for student populations that are historically underrepresented in higher education and within specific disciplines. Engineering education has been attempting to address these issues for some time and with the graduation rates for engineering programs averaging up to 50%, understanding why students stay or leave these programs is crucial information. The reasons students persist or leave higher education programs are important data points for any university program. However, traditional statistical analysis methods may not be robust or accessible enough to understand and communicate these factors. To determine these factors, machine learning and predictive analysis software were employed to examine these factors of persistence for engineering education students. Dozens of variables including academic scores, non-cognitive and skill-based assessments, and demographic information for 300 students in an introductory engineering graphics course were used to develop a model capable of predicting whether a student will persist with nearly 94% accuracy. This research indicated that age, gender, three-dimensional modeling self-efficacy, and parental career were the most influential factors of persistence. Using this information, combined with the theoretical underpinnings of these constructs, may provide areas in which to focus and specifically target in order to improve persistence rates in engineering education.
AB - Student persistence in higher education is a topic of discussion in the academic literature and within our colleges and universities. This is especially relevant as university programs continue to focus on equity, inclusion, and support for student populations that are historically underrepresented in higher education and within specific disciplines. Engineering education has been attempting to address these issues for some time and with the graduation rates for engineering programs averaging up to 50%, understanding why students stay or leave these programs is crucial information. The reasons students persist or leave higher education programs are important data points for any university program. However, traditional statistical analysis methods may not be robust or accessible enough to understand and communicate these factors. To determine these factors, machine learning and predictive analysis software were employed to examine these factors of persistence for engineering education students. Dozens of variables including academic scores, non-cognitive and skill-based assessments, and demographic information for 300 students in an introductory engineering graphics course were used to develop a model capable of predicting whether a student will persist with nearly 94% accuracy. This research indicated that age, gender, three-dimensional modeling self-efficacy, and parental career were the most influential factors of persistence. Using this information, combined with the theoretical underpinnings of these constructs, may provide areas in which to focus and specifically target in order to improve persistence rates in engineering education.
UR - http://www.scopus.com/inward/record.url?scp=85124556238&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:85124556238
SN - 2153-5965
JO - ASEE Annual Conference and Exposition, Conference Proceedings
JF - ASEE Annual Conference and Exposition, Conference Proceedings
T2 - 2021 ASEE Virtual Annual Conference, ASEE 2021
Y2 - 26 July 2021 through 29 July 2021
ER -