TY - GEN
T1 - UDE-based robust control for a class of non-affine nonlinear systems
AU - Ren, Beibei
AU - Zhong, Qing Chang
N1 - Copyright:
Copyright 2014 Elsevier B.V., All rights reserved.
PY - 2013
Y1 - 2013
N2 - In this paper, the UDE (uncertainty and disturbance estimator) based robust control is investigated for a class of non-affine nonlinear systems in a normal form. Control system design for non-affine nonlinear systems is one of the most difficult problems due to the lack of mathematical tools. This is also true even for the exact known non-affine systems because of the difficulty in explicitly constructing the control law. It is shown that the proposed UDE-based robust control strategy leads to a stable system. The most important features of the approach are that (i) by adding and subtracting the control term u, the original non-affine form is transformed into a semi-affine form, which not only simplifies the control design procedure, but also avoids the singularity problem of the controller; (ii) the employment of UDE makes the estimation of the lumped uncertain term which is a function of control input, states and disturbances possible, rather than states alone; and (iii) it does not require any knowledge (e.g., bounds) about the uncertainties and disturbances, except the information about the bandwidth, during the design process. The stability of the closed-loop system is established. Effectiveness of the proposed approach is demonstrated through application to the hard disk driver control problem.
AB - In this paper, the UDE (uncertainty and disturbance estimator) based robust control is investigated for a class of non-affine nonlinear systems in a normal form. Control system design for non-affine nonlinear systems is one of the most difficult problems due to the lack of mathematical tools. This is also true even for the exact known non-affine systems because of the difficulty in explicitly constructing the control law. It is shown that the proposed UDE-based robust control strategy leads to a stable system. The most important features of the approach are that (i) by adding and subtracting the control term u, the original non-affine form is transformed into a semi-affine form, which not only simplifies the control design procedure, but also avoids the singularity problem of the controller; (ii) the employment of UDE makes the estimation of the lumped uncertain term which is a function of control input, states and disturbances possible, rather than states alone; and (iii) it does not require any knowledge (e.g., bounds) about the uncertainties and disturbances, except the information about the bandwidth, during the design process. The stability of the closed-loop system is established. Effectiveness of the proposed approach is demonstrated through application to the hard disk driver control problem.
UR - http://www.scopus.com/inward/record.url?scp=84902382929&partnerID=8YFLogxK
U2 - 10.1115/DSCC2013-3807
DO - 10.1115/DSCC2013-3807
M3 - Conference contribution
AN - SCOPUS:84902382929
SN - 9780791856147
T3 - ASME 2013 Dynamic Systems and Control Conference, DSCC 2013
BT - Nonlinear Estimation and Control; Optimization and Optimal Control; Piezoelectric Actuation and Nanoscale Control; Robotics and Manipulators; Sensing;
PB - American Society of Mechanical Engineers (ASME)
Y2 - 21 October 2013 through 23 October 2013
ER -