TY - JOUR
T1 - Translocation, trophic transfer, accumulation and depuration of polystyrene microplastics in Daphnia magna and Pimephales promelas
AU - Elizalde-Velázquez, Armando
AU - Carcano, Analicia M.
AU - Crago, Jordan
AU - Green, Micah J.
AU - Shah, Smit A.
AU - Cañas-Carrell, Jaclyn E.
N1 - Publisher Copyright:
© 2020 Elsevier Ltd
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/4
Y1 - 2020/4
N2 - In recent years, reports of plastic debris in the gastrointestinal (GI) tract of fish have been well documented in the scientific literature. This, in turn, increased concerns regarding human health exposure to microplastics through the consumption of contaminated fish. Most of the available research regarding microplastic toxicity has focused on marine organisms through direct feeding or waterborne exposures at the individual level. However, little is known about the trophic transfer of microplastics through the aquatic food chain. Freshwater zooplankton Daphnia magna (hereafter Daphnia), and the fathead minnow Pimephales promelas (FHM), are well-known model species used in standard toxicological studies and ecological risk assessments that provide a simple model for trophic transfer. The aim of this study was to assess the tissue translocation, trophic transfer, and depuration of two concentrations (20 and 2000-part ml−1) of 6 μm polystyrene (PS) microplastics particles between Daphnia and FHM. Bioconcentration factors (BCF) and bioaccumulation factors (BAF) were determined. Fluorescent microscopy was used to determine the number of particles in the water media and within the organs of both species. Throughout the five days of exposure, PS particles were only found within the GI tract of both species. The BCF for Daphnia was 0.034 ± 0.005 for the low concentration and 0.026 ± 0.006 for the high concentration. The BAF for FHM was 0.094 ± 0.037 for the low concentration and 0.205 ± 0.051 for the high concentration. Between 72 and 96 h after exposure all microplastic particles were depurated from both species. The presence of food had a significant effect on the depuration of microplastic particles from Daphnia but not for FHM. Based on the low BCF and BAF values for both species, rapid depuration rates, and null translocation of microplastic particles to organs and tissues from the GI tract, there is a low probability that microplastics will bioconcentrate and bioaccumulate under environmental conditions. Low uptake, null translocation, and short retention time, indicate a low probability that 6 μm PS microplastics will bioconcentrate and bioaccumulate under environmentally relevant conditions.
AB - In recent years, reports of plastic debris in the gastrointestinal (GI) tract of fish have been well documented in the scientific literature. This, in turn, increased concerns regarding human health exposure to microplastics through the consumption of contaminated fish. Most of the available research regarding microplastic toxicity has focused on marine organisms through direct feeding or waterborne exposures at the individual level. However, little is known about the trophic transfer of microplastics through the aquatic food chain. Freshwater zooplankton Daphnia magna (hereafter Daphnia), and the fathead minnow Pimephales promelas (FHM), are well-known model species used in standard toxicological studies and ecological risk assessments that provide a simple model for trophic transfer. The aim of this study was to assess the tissue translocation, trophic transfer, and depuration of two concentrations (20 and 2000-part ml−1) of 6 μm polystyrene (PS) microplastics particles between Daphnia and FHM. Bioconcentration factors (BCF) and bioaccumulation factors (BAF) were determined. Fluorescent microscopy was used to determine the number of particles in the water media and within the organs of both species. Throughout the five days of exposure, PS particles were only found within the GI tract of both species. The BCF for Daphnia was 0.034 ± 0.005 for the low concentration and 0.026 ± 0.006 for the high concentration. The BAF for FHM was 0.094 ± 0.037 for the low concentration and 0.205 ± 0.051 for the high concentration. Between 72 and 96 h after exposure all microplastic particles were depurated from both species. The presence of food had a significant effect on the depuration of microplastic particles from Daphnia but not for FHM. Based on the low BCF and BAF values for both species, rapid depuration rates, and null translocation of microplastic particles to organs and tissues from the GI tract, there is a low probability that microplastics will bioconcentrate and bioaccumulate under environmental conditions. Low uptake, null translocation, and short retention time, indicate a low probability that 6 μm PS microplastics will bioconcentrate and bioaccumulate under environmentally relevant conditions.
KW - Bioaccumulation
KW - Bioconcentration
KW - Depuration
KW - Microplastics
KW - Trophic transfer
UR - http://www.scopus.com/inward/record.url?scp=85077719627&partnerID=8YFLogxK
U2 - 10.1016/j.envpol.2020.113937
DO - 10.1016/j.envpol.2020.113937
M3 - Article
C2 - 31952101
AN - SCOPUS:85077719627
VL - 259
JO - Environmental Pollution
JF - Environmental Pollution
SN - 0269-7491
M1 - 113937
ER -