TY - JOUR
T1 - Transdermal delivery of insulin using microneedles in vivo
AU - Martanto, Wijaya
AU - Davis, Shawn P.
AU - Holiday, Nicholas R.
AU - Wang, Jenny
AU - Gill, Harvinder S.
AU - Prausnitz, Mark R.
N1 - Funding Information:
We would like to thank Cherry Forkey for help with the animal studies and Tracey Couse for help with histological analysis. This work was supported in part by the National Institutes of Health and American Diabetes Association.
PY - 2004/6
Y1 - 2004/6
N2 - Purpose. The purpose of this study was to design and fabricate arrays of solid microneedles and insert them into the skin of diabetic hairless rats for transdermal delivery of insulin to lower blood glucose level. Methods. Arrays containing 105 microneedles were laser-cut from stainless steel metal sheets and inserted into the skin of anesthetized hairless rats with streptozotocin- induced diabetes. During and after microneedle treatment, an insulin solution (100 or 500 U/ml) was placed in contact with the skin for 4 h. Microneedles were removed 10 s, 10 min, or 4 h after initiating transdermal insulin delivery. Blood glucose levels were measured electrochemically every 30 min. Plasma insulin concentration was determined by radioimmunoassay at the end of most experiments. Results. Arrays of microneedles were fabricated and demonstrated to insert fully into hairless rat skin in vivo. Microneedles increased skin permeability to insulin, which rapidly and steadily reduced blood glucose levels to an extent similar to 0.05-0.5 U insulin injected subcutaneously. Plasma insulin concentrations were directly measured to be 0.5-7.4 ng/ml. Higher donor solution insulin concentration, shorter insertion time, and fewer repeated insertions resulted in larger drops in blood glucose level and larger plasma insulin concentrations. Conclusions. Solid metal microneedles are capable of increasing transdermal insulin delivery and lowering blood glucose levels by as much as 80% in diabetic hairless rats in vivo.
AB - Purpose. The purpose of this study was to design and fabricate arrays of solid microneedles and insert them into the skin of diabetic hairless rats for transdermal delivery of insulin to lower blood glucose level. Methods. Arrays containing 105 microneedles were laser-cut from stainless steel metal sheets and inserted into the skin of anesthetized hairless rats with streptozotocin- induced diabetes. During and after microneedle treatment, an insulin solution (100 or 500 U/ml) was placed in contact with the skin for 4 h. Microneedles were removed 10 s, 10 min, or 4 h after initiating transdermal insulin delivery. Blood glucose levels were measured electrochemically every 30 min. Plasma insulin concentration was determined by radioimmunoassay at the end of most experiments. Results. Arrays of microneedles were fabricated and demonstrated to insert fully into hairless rat skin in vivo. Microneedles increased skin permeability to insulin, which rapidly and steadily reduced blood glucose levels to an extent similar to 0.05-0.5 U insulin injected subcutaneously. Plasma insulin concentrations were directly measured to be 0.5-7.4 ng/ml. Higher donor solution insulin concentration, shorter insertion time, and fewer repeated insertions resulted in larger drops in blood glucose level and larger plasma insulin concentrations. Conclusions. Solid metal microneedles are capable of increasing transdermal insulin delivery and lowering blood glucose levels by as much as 80% in diabetic hairless rats in vivo.
KW - diabetes
KW - microelectromechanical systems (MEMS)
KW - microfabrication
KW - skin
KW - transdermal drug delivery
UR - http://www.scopus.com/inward/record.url?scp=3042809905&partnerID=8YFLogxK
U2 - 10.1023/B:PHAM.0000029282.44140.2e
DO - 10.1023/B:PHAM.0000029282.44140.2e
M3 - Article
C2 - 15212158
AN - SCOPUS:3042809905
SN - 0724-8741
VL - 21
SP - 947
EP - 952
JO - Pharmaceutical Research
JF - Pharmaceutical Research
IS - 6
ER -