Toward the development of an efficient bulk semi-insulating GaN photoconductive switch

Vincent Meyers, Daniel Mauch, Vladimir Kuryatkov, Sergey Nikishin, James Dickens, Andreas Neuber, Richard Ness

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Photoconductive semiconductor switches (PCSS) made from bulk, semi-insulating GaN have been fabricated and tested under pulse-charged conditions. Switching response and photocurrent efficiency of GaN PCSSs triggered by sub-10 ns, 355 nm laser pulses is reported. It is shown that fast rise time (<300 ns) voltage pulses can be used to charge a GaN PCSS to fields well beyond the DC breakdown field strength of GaN and improve switching performance. GaN's wide band gap, breakdown field strength, and electron mobility make it a material superior to SiC and far superior to GaAs for PCSS applications, though historically these materials have dominated PCSS research due to their relative ease of fabrication. Recent improvements to crystal quality and wafer size have allowed GaN and more recently semi-insulating GaN to play an increasing role in high-power and high-voltage solid state devices.

Original languageEnglish
Title of host publication2017 IEEE 21st International Conference on Pulsed Power, PPC 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Print)9781509057481
DOIs
StatePublished - Feb 13 2018
Event21st IEEE International Conference on Pulsed Power, PPC 2017 - Brighton, United Kingdom
Duration: Jun 18 2017Jun 22 2017

Publication series

NameIEEE International Pulsed Power Conference
Volume2017-June
ISSN (Print)2158-4915
ISSN (Electronic)2158-4923

Conference

Conference21st IEEE International Conference on Pulsed Power, PPC 2017
CountryUnited Kingdom
CityBrighton
Period06/18/1706/22/17

Fingerprint Dive into the research topics of 'Toward the development of an efficient bulk semi-insulating GaN photoconductive switch'. Together they form a unique fingerprint.

Cite this