TY - JOUR
T1 - Thermophysical Properties of Imidazolium-Based Ionic Liquids: The Effect of Aliphatic versus Aromatic Functionality
AU - Tao, Ran
AU - Tamas, George
AU - Xue, Lianjie
AU - Simon, Sindee
AU - Quitevis, Edward
PY - 2014/9
Y1 - 2014/9
N2 - In this work, a series of imidazolium-based ionic liquids with varying functionalities from aliphatic to aromatic groups and a fixed anion, bis[(trifluoromethane)sulfonyl]amide, were investigated. The imidazolium cations included 1-heptyl-3-methylimidazolium, 1-(cyclohexylmethyl)-3-methylimidazolium, 1-benzyl-3-methylimidazolium, 1,3-dibenzylimidazolium, and 1-(2-naphthylmethyl)-3-methylimidazolium. Structureproperty relationships were investigated regarding the substituent effects on the imidazolium cation, including n-alkyl versus cycloalkyl and aromatic versus aliphatic, as well as the effects of cation symmetry and larger aromatic polycyclic functionalities. Thermophysical properties investigated include density, thermal transition temperatures, and decomposition temperatures. The densities of the ionic liquids are governed by the substituents on the cation: n-alkyl < cycloalkyl < aromatic. The group contribution method is applicable for the density estimation of ionic liquids, an
AB - In this work, a series of imidazolium-based ionic liquids with varying functionalities from aliphatic to aromatic groups and a fixed anion, bis[(trifluoromethane)sulfonyl]amide, were investigated. The imidazolium cations included 1-heptyl-3-methylimidazolium, 1-(cyclohexylmethyl)-3-methylimidazolium, 1-benzyl-3-methylimidazolium, 1,3-dibenzylimidazolium, and 1-(2-naphthylmethyl)-3-methylimidazolium. Structureproperty relationships were investigated regarding the substituent effects on the imidazolium cation, including n-alkyl versus cycloalkyl and aromatic versus aliphatic, as well as the effects of cation symmetry and larger aromatic polycyclic functionalities. Thermophysical properties investigated include density, thermal transition temperatures, and decomposition temperatures. The densities of the ionic liquids are governed by the substituents on the cation: n-alkyl < cycloalkyl < aromatic. The group contribution method is applicable for the density estimation of ionic liquids, an
U2 - 10.1021/je500185r
DO - 10.1021/je500185r
M3 - Article
SP - 2717
EP - 2724
JO - Journal of Chemical and Engineering Data
JF - Journal of Chemical and Engineering Data
ER -