Thermodynamic state of the magnetic flux compression generator volume

A. A. Neuber, T. A. Holt, J. C. Dickens, M. Kristiansen

Research output: Contribution to journalConference article

Abstract

The knowledge of the thermodynamic state of the gas trapped in a helical flux compression generator is crucial for the assessment of flux loss due to internal electrical breakdown/arcing. Besides the helix deformation and armature deceleration at extremely high current amplitudes approaching 1 MA, the thermodynamic state of the shocked and compressed gas causes problems in the prediction of the generator output current vs. time towards the end of generator operation. Such a breakdown is experimentally detected as an abrupt change in the time derivative of the current waveform and it is easily distinguished from partial turn skipping by its sharper fall and non-periodic occurrence. The thermodynamic state of the generator was measured using primarily optical emission spectroscopy. Three main stages of operation are discussed: (1) The initial stage, which can be represented by a freely expanding armature, that shows fairly low gas temperatures, possibly as low as 2,000 K. (2) The intermediate stage during 14 to 4 microseconds before generator burnout that exhibits mainly an atomic copper line transition at about 0.8 eV. (3) The last few microseconds that reveal a highly compressed gas with temperatures of about 5,000 K and pressures of about 200 bar. Most experiments were conducted in air initially at STP, some results are given for SF6 initially at one atmosphere. In order to link the thermodynamic state to the breakdown sensitivity, additionally, simple conductivity measurements were conducted in current-free flux compression generator models.

Original languageEnglish
Pages (from-to)O1B5
JournalIEEE International Conference on Plasma Science
StatePublished - Jan 1 2001
Event28th IEEE International Conference on Plasma Science/ 13th IEEE International Pulsed Power Conference - Las Vegas, NV, United States
Duration: Jun 17 2001Jun 22 2001

    Fingerprint

Cite this