Thermal influences on the neutralization of spore forming bacteria

Oliver Mulamba, Michelle Pantoya, Emily Hunt

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

Bacillus anthracis spores have shown extreme resistance to heat treatment methods. Various novel ideas have emerged including the use of thermite reactions for the de-activation of bacterial spores, focusing on the anthrax forming spore Bacillus anthracis. The basis of de-activation is dependent on the heat transfer to the spore and chemical interaction with the halogen gas. The objective of this work was to observe the mechanisms of de-activation as related to the thermal and halogen gas effect on the spore. Research focused on the specific roles of the heat transfer and the combination of heat and halogen gas. Results showed heat transfer in the spore greatly enhanced the effectiveness of the halogen gasses in the deactivation process. The observed results strengthen the hypothesis that the heat transfer affects the permeability of the bacterial spores, enabling the halogen gas to deactivate the spores. This novel observation leads to further studies in the combustion properties of thermites. Results from this study suggest that thermite formulations with increased heat of reaction will increase the thermal wave promoting spore neutralization.

Original languageEnglish
Title of host publicationASME 2012 Heat Transfer Summer Conf. Collocated with the ASME 2012 Fluids Engineering Div. Summer Meeting and the ASME 2012 10th Int. Conf. on Nanochannels, Microchannels and Minichannels, HT 2012
Pages1061-1065
Number of pages5
DOIs
StatePublished - 2012
EventASME 2012 Heat Transfer Summer Conference Collocated with the ASME 2012 Fluids Engineering Div. Summer Meeting and the ASME 2012 10th Int. Conf. on Nanochannels, Microchannels and Minichannels, HT 2012 - Rio Grande, Puerto Rico
Duration: Jul 8 2012Jul 12 2012

Publication series

NameASME 2012 Heat Transfer Summer Conf. Collocated with the ASME 2012 Fluids Engineering Div. Summer Meeting and the ASME 2012 10th Int. Conf. on Nanochannels, Microchannels and Minichannels, HT 2012
Volume1

Conference

ConferenceASME 2012 Heat Transfer Summer Conference Collocated with the ASME 2012 Fluids Engineering Div. Summer Meeting and the ASME 2012 10th Int. Conf. on Nanochannels, Microchannels and Minichannels, HT 2012
Country/TerritoryPuerto Rico
CityRio Grande
Period07/8/1207/12/12

Fingerprint

Dive into the research topics of 'Thermal influences on the neutralization of spore forming bacteria'. Together they form a unique fingerprint.

Cite this