Thermal analysis of continuous filament wound composites

Darryl L. James, W. Z. Black

Research output: Contribution to journalConference articlepeer-review


A transient thermal model for the continuous filament winding process using an infrared energy source has been transformed into a quasi-steady problem by working in an Eulerian reference frame. The model has been subdivided into two regimes. A one-dimensional, Cartesian coordinate, heat transfer analysis of the tape regime is coupled with a three dimensional, cylindrical coordinate, heat transfer analysis of the composite substrate in the mandrel regime. Together, the temperature distribution of the filament winding process is predicted as a function of the power of the infrared energy source, location of the infrared spot, infrared spot size, mandrel rotational speed, and material properties. The temperature distribution determined in the numerical analysis is verified by comparing temperatures measured with an infrared camera attached to a small-scale filament winding apparatus. The results suggest that varying the position of the lamp, changing the winding speed, or modifying the power output of the lamp can have a major impact on the temperature distribution throughout the composite during winding and consolidation.

Original languageEnglish
Pages (from-to)1-10
Number of pages10
JournalAmerican Society of Mechanical Engineers (Paper)
StatePublished - 1993
EventProceedings of the ASME Winter Conference - New Orleans, LA, USA
Duration: Nov 28 1993Dec 3 1993


Dive into the research topics of 'Thermal analysis of continuous filament wound composites'. Together they form a unique fingerprint.

Cite this