Theoretical study of metal-ligand interaction in Sm(III), Eu(III), and Tb(III) complexes of coumarin-3-carboxylic acid in the gas phase and solution

Ivelina Georgieva, Natasha Trendafilova, Adélia J.A. Aquino, Hans Lischka

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

The interaction of lanthanide(III) cations (Ln(III) = Sm(III), Eu(III), and Tb(III)) with the deprotonated form of the coumarin-3-carboxylic acid (cca -) has been investigated by density functional theory (DFT/B3LYP) and confirmed by reference MP2 and CCSD(T) computations. Solvent effects on the geometries and stabilities of the Ln(III) complexes were computed using a combination of water clusters and a continuum solvation model. The following two series of systems were considered: (i) Ln(cca)2+, Ln(cca) 2+, Ln(cca)3 and (ii) Ln(cca)(H 2O)2Cl2, Ln(cca)2(H 2O)2-Cl, Ln(cca)3. The strength and character of the Ln(III)-cca- bidentate bonding were characterized by calculated Ln-O bond lengths, binding energies, ligand deformation energies, energy partitioning analysis, σ-donation contributions, and natural population analyses. The energy decomposition calculations predicted predominant electrostatic interaction terms to the Ln-cca bonding (ionic character) and showed variations of the orbital interaction term (covalent contributions) for the Ln-cca complexes studied. Electron distribution analysis suggested that the covalent contribution comes mainly from the interaction with the carboxylate moiety of cca-.

Original languageEnglish
Pages (from-to)10926-10936
Number of pages11
JournalInorganic Chemistry
Volume46
Issue number25
DOIs
StatePublished - Dec 10 2007

Fingerprint

Dive into the research topics of 'Theoretical study of metal-ligand interaction in Sm(III), Eu(III), and Tb(III) complexes of coumarin-3-carboxylic acid in the gas phase and solution'. Together they form a unique fingerprint.

Cite this