TY - JOUR
T1 - The western hayfork terrane
T2 - Remnants of the Middle Jurassic arc in the Klamath Mountain province, California and Oregon
AU - Barnes, Calvin G.
AU - Barnes, Melanie A.
N1 - Funding Information:
Although far past deadlines, this paper is dedicated to Professor A.W. Snoke, in recognition of his pioneering work on the tectonics, structural geology, and petrology of the Klamath Mountains. Mary Donato and Ron Kistler generously provided unpublished microprobe and Sr isotope data, respectively, and Ken Johnson provided able assistance in the field. Our work on the WHT benefited from on-the-outcrop discussions with Mary Donato, Gary Gray, and Susan Tomlinson, analytical assistance from Kevin Werts, and work on an undergraduate thesis project by Jill Johnson. Reviewers Josh Schwartz and Andy Barth and editors Bob Miller and Shanaka de Silva provided extensive and very helpful reviews. This research was supported by National Science Foundation grants EAR-8720141, EAR-9117103, and EAR-1551467.
Publisher Copyright:
© 2020 The Authors.
PY - 2020
Y1 - 2020
N2 - Arc magmatism was widespread in the Cordillera of North America during Middle Jurassic time. The predominant representative of this arc magmatism in the Klamath Mountain province is the western Hayfork terrane (WHT). This terrane is primarily metasedimentary, consisting mainly of crystal-lithic arenite, argillitic sediments and lahar deposits, rare lavas, and sparse quartz-rich arenite. Because lavas are rare, petrologic study using bulk-rock compositions is restricted to analysis of cobbles in lahar deposits. Moreover, the WHT underwent greenschist-facies regional metamorphism with consequent modification of bulk-rock compositions. However, many of the sandstones preserve igneous clinopyroxene and calcic amphibole, which were phenocrysts in the original volcanic rocks. Major-and trace-element compositions of the magmatic pyroxene and amphibole permit reconstruction of the range of rock types eroded from the arc, specifically scant basalt, volumetrically dominant basaltic andesite and andesite, and smaller but significant amounts of dacite and rhyodacite. Eruptive temperatures reached ~1180 °C and may have been as low as ~800 °C on the basis of pyroxene and amphibole thermometry, with most eruptive temperatures 1000 °C. On the basis of augite compositions, WHT magmatism is divided into two suites. One features high-Mg augite with high abundances of Cr and Sr, high Sr/Y and Nd/Yb values, and low Y and heavy rare-earth elements (REE). These compositions are typical of high-Mg andesite and dacite suites in which garnet is a residual mineral, most probably in a metasomatized upper mantle setting. The other suite contains augite with lower Sr, Sr/Y, and Nd/Yb; these features are typical of normal calc-alkaline magmas. Augite from a coeval pluton emplaced inboard of the western Hayfork outcrop belt is similar to augite from the low-Sr group of WHT samples. In contrast, augite from the Ironside Mountain pluton, previously considered the plutonic equivalent of WHT sediments, is Fe-rich, with low Cr and Sr and relatively high Zr and REE. Previous suggestions that the Ironside Mountain pluton is correlative with the WHT are not supported by these data. The magmatic diversity of the WHT is typical of the modern Aleutian and Cascade arcs, among others, and could reflect subduction of relatively young oceanic lithosphere or fragmentation of the subduction slab. Although we favor the former setting, present data cannot rule out the latter. The presence of scant quartz-rich sedimentary rocks within the predominantly volcanogenic WHT is consistent with deposition as a sedimentary apron associated with a west-facing magmatic arc with late-stage input from cratonal sources. The results of this study indicate that detailed petrographic study of arc-derived sedimentary rocks, including major-and trace-element analysis of preserved magmatic phases, yields information about magmatic affinities, processes, and temperatures.
AB - Arc magmatism was widespread in the Cordillera of North America during Middle Jurassic time. The predominant representative of this arc magmatism in the Klamath Mountain province is the western Hayfork terrane (WHT). This terrane is primarily metasedimentary, consisting mainly of crystal-lithic arenite, argillitic sediments and lahar deposits, rare lavas, and sparse quartz-rich arenite. Because lavas are rare, petrologic study using bulk-rock compositions is restricted to analysis of cobbles in lahar deposits. Moreover, the WHT underwent greenschist-facies regional metamorphism with consequent modification of bulk-rock compositions. However, many of the sandstones preserve igneous clinopyroxene and calcic amphibole, which were phenocrysts in the original volcanic rocks. Major-and trace-element compositions of the magmatic pyroxene and amphibole permit reconstruction of the range of rock types eroded from the arc, specifically scant basalt, volumetrically dominant basaltic andesite and andesite, and smaller but significant amounts of dacite and rhyodacite. Eruptive temperatures reached ~1180 °C and may have been as low as ~800 °C on the basis of pyroxene and amphibole thermometry, with most eruptive temperatures 1000 °C. On the basis of augite compositions, WHT magmatism is divided into two suites. One features high-Mg augite with high abundances of Cr and Sr, high Sr/Y and Nd/Yb values, and low Y and heavy rare-earth elements (REE). These compositions are typical of high-Mg andesite and dacite suites in which garnet is a residual mineral, most probably in a metasomatized upper mantle setting. The other suite contains augite with lower Sr, Sr/Y, and Nd/Yb; these features are typical of normal calc-alkaline magmas. Augite from a coeval pluton emplaced inboard of the western Hayfork outcrop belt is similar to augite from the low-Sr group of WHT samples. In contrast, augite from the Ironside Mountain pluton, previously considered the plutonic equivalent of WHT sediments, is Fe-rich, with low Cr and Sr and relatively high Zr and REE. Previous suggestions that the Ironside Mountain pluton is correlative with the WHT are not supported by these data. The magmatic diversity of the WHT is typical of the modern Aleutian and Cascade arcs, among others, and could reflect subduction of relatively young oceanic lithosphere or fragmentation of the subduction slab. Although we favor the former setting, present data cannot rule out the latter. The presence of scant quartz-rich sedimentary rocks within the predominantly volcanogenic WHT is consistent with deposition as a sedimentary apron associated with a west-facing magmatic arc with late-stage input from cratonal sources. The results of this study indicate that detailed petrographic study of arc-derived sedimentary rocks, including major-and trace-element analysis of preserved magmatic phases, yields information about magmatic affinities, processes, and temperatures.
UR - http://www.scopus.com/inward/record.url?scp=85089211299&partnerID=8YFLogxK
U2 - 10.1130/GES02229.1
DO - 10.1130/GES02229.1
M3 - Article
AN - SCOPUS:85089211299
SN - 1553-040X
VL - 16
SP - 1769
EP - 1792
JO - Geosphere
JF - Geosphere
IS - 4
ER -