The Real-Time Distributed Control of the Virgo Interferometric Detector of Gravitational Waves

F. Acernese, F. Barone, P. Amico, L. Bosi, F. Cottone, A. Dari, L. Gammaitoni, F. Marchesoni, M. Punturo, F. Travasso, H. Vocca, M. Alshourbagy, L. Barsotti, S. Bigotta, S. Birindelli, C. Bradaschia, S. Braccini, G. Cella, C. Corda, M. del PreteA. Di Virgilio, I. Ferrante, F. Fidecaro, F. Frasconi, A. Gennai, A. Giazotto, M. Mantovani, R. Passaquieti, D. Passuello, R. Poggiani, M. Tarallo, M. Tonelli, A. Toncelli, C. Tremola, G. Vajente, F. Antonucci, P. Astone, A. Corsi, S. Frasca, E. Majorana, C. Palomba, P. Puppo, P. Rapagnani, F. Ricci, S. Aoudia, F. Bondu, A. Brillet, E. Chassande-Mottin, F. Cleva, J. P. Coulon, B. Dujardin, J. D. Fournier, H. Heitmann, M. Laval, C. N. Man, A. Spallicci, J. Y. Vinet, S. Avino, E. Calloni, R. De Rosa, L. Di Fiore, A. Eleuteri, F. Garufi, G. Giordano, L. Milano, S. Pardi, K. Qipiani, I. Ricciardi, G. Russo, S. Solimeno, D. Babusci, L. Giordano, G. Ballardin, R. Barillé, F. Carbognani, F. Cavalier, N. Christensen, E. Cuoco, V. Dattilo, M. Evans, I. Fiori, A. Freise, E. Genin, S. Hamdani, S. Hebri, D. Huet, P. La Penna, B. Lopez, J. Marque, F. Menzinger, C. Moins, F. Nocera, A. Pasqualetti, P. Ruggi, R. Flaminio, F. Paoletti, M. Barsuglia, M. A. Bizouard, V. Brisson, R. Cavalieri, A. C. Clapson, M. Davier, P. Hello, S. Kreckelbergh, N. Leroy, F. Beauville, D. Buskulic, R. Gouaty, D. Grosjean, S. Karkar, N. Letendre, F. Marion, A. Masserot, B. Mours, E. Tournefier, D. Verkindt, M. Yvert, C. Boccara, V. Loriette, J. Moreau, V. Reita, T. S. Bauer, E. Campagna, E. Cesarini, G. M. Guidi, M. Lorenzini, G. Losurdo, F. Martelli, M. Mazzoni, F. Piergiovanni, F. Vetrano, A. Viceré, J. M. Mackowski, N. Morgado, L. Pinard, A. Remillieux, J. F.J. van den Brand, S. van der Putten

Research output: Contribution to journalArticlepeer-review

7 Scopus citations


The VIRGO experiment for the detection of gravitational waves is a big challenge both for physics and for technology. In particular, to satisfy the stringent requirements on the alignment and position of its suspended optical components to keep the detector at its point, a very complex distributed and supervised control system has been implemented. The current constraints are about 10−10m RMS for the longitudinal control (“Locking’’) and 10 9 rad RMS for the angular degrees of freedom (“Alignment’’). These requirements are satisfied by means of a specially designed hierarchical architecture for the local control system. It is necessary for managing the hard task of filtering all the environmental noises that limit the sensitivity of the interferometer. On the other end, the interferometer is supervised by a distributed global control system to maintain the detector fully operational. In this paper we describe the status of the real-time distributed control system of the Virgo interferometric detector of Gravitational waves, its performances and planned improvements.

Original languageEnglish
Pages (from-to)302-310
Number of pages9
JournalIEEE Transactions on Nuclear Science
Issue number1
StatePublished - Feb 1 2008


Dive into the research topics of 'The Real-Time Distributed Control of the Virgo Interferometric Detector of Gravitational Waves'. Together they form a unique fingerprint.

Cite this