The puzzling case of GRB 990123: Prompt emission and broad-band afterglow modeling

A. Corsi, L. Piro, E. Kuulkers, L. Amati, L. A. Antonelli, E. Costa, M. Feroci, F. Frontera, C. Guidorzi, J. Heise, J. In 'T Zand, E. Maiorano, E. Montanari, L. Nicastro, E. Pian, P. Soffitta

Research output: Contribution to journalArticlepeer-review

31 Scopus citations


We report on BeppoSAX simultaneous X- and γ-ray observations of the bright γ-ray burst (GRB) 990123. We present the broad-band spectrum of the prompt emission, including optical, X- and γ-rays, confirming the suggestion that the emission mechanisms at low and high frequencies must have different physical origins. In the framework of the standard fireball model, we discuss the X-ray afterglow observed by the Narrow Field Instruments (NFIs) on board BeppoSAX and its hard X-ray emission up to 60 keV several hours after the burst, detected for about 20 ks by the Phoswich Detection System (PDS). Considering the 2-10 keV and optical light curves, the 0.1-60 keV spectrum during the 20 ks in which the PDS signal was present and the 8.46 GHz upper limits, we find that the multi-wavelength observations cannot be readily accommodated by basic afterglow models. While the temporal and spectral behavior of the optical afterglow is possibly explained by a synchrotron cooling frequency between the optical and the X-ray energy band during the NFIs observations, in X-rays this assumption only accounts for the slope of the 2-10 keV light curve, but not for the flatness of the 0.1-60 keV spectrum. Including the contribution of Inverse Compton (IC) scattering, we solve the problem of the flat X-ray spectrum and justify the hard X-ray emission; we also suggest that the lack of a significant detection of 15-60 keV emission in the following 75 ks and last 70 ks spectra, should be related to poorer statistics rather than to an important suppression of IC contribution. However, considering also the radio band data, we find the 8.46 GHz upper limits violated. On the other hand, leaving unchanged the emission mechanism requires modifying the hydrodynamics by invoking an ambient medium whose density rises rapidly with radius and by having the shock losing energy. Thus we are left with an open puzzle which requires further inspection.

Original languageEnglish
Pages (from-to)829-840
Number of pages12
JournalAstronomy and Astrophysics
Issue number3
StatePublished - Aug 2005


  • Cosmology: observations
  • Gamma rays: bursts
  • Radiation mechanisms: non-thermal
  • X-rays: bursts


Dive into the research topics of 'The puzzling case of GRB 990123: Prompt emission and broad-band afterglow modeling'. Together they form a unique fingerprint.

Cite this