The longest voyage: Tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia

Sankar Chatterjee, Arghya Goswami, Christopher R. Scotese

Research output: Contribution to journalReview articlepeer-review

284 Scopus citations


The tectonic evolution of the Indian plate, which started in Late Jurassic about 167. million years ago (~. 167. Ma) with the breakup of Gondwana, presents an exceptional and intricate case history against which a variety of plate tectonic events such as: continental breakup, sea-floor spreading, birth of new oceans, flood basalt volcanism, hotspot tracks, transform faults, subduction, obduction, continental collision, accretion, and mountain building can be investigated. Plate tectonic maps are presented here illustrating the repeated rifting of the Indian plate from surrounding Gondwana continents, its northward migration, and its collision first with the Kohistan-Ladakh Arc at the Indus Suture Zone, and then with Tibet at the Shyok-Tsangpo Suture. The associations between flood basalts and the recurrent separation of the Indian plate from Gondwana are assessed. The breakup of India from Gondwana and the opening of the Indian Ocean is thought to have been caused by plate tectonic forces (i.e., slab pull emanating from the subduction of the Tethyan ocean floor beneath Eurasia) which were localized along zones of weakness caused by mantle plumes (Bouvet, Marion, Kerguelen, and Reunion plumes). The sequential spreading of the Southwest Indian Ridge/Davie Ridge, Southeast Indian Ridge, Central Indian Ridge, Palitana Ridge, and Carlsberg Ridge in the Indian Ocean were responsible for the fragmentation of the Indian plate during the Late Jurassic and Cretaceous times. The Réunion and the Kerguelen plumes left two spectacular hotspot tracks on either side of the Indian plate. With the breakup of Gondwana, India remained isolated as an island continent, but reestablished its biotic links with Africa during the Late Cretaceous during its collision with the Kohistan-Ladakh Arc (~. 85. Ma) along the Indus Suture. Soon after the Deccan eruption, India drifted northward as an island continent by rapid motion carrying Gondwana biota, about 20. cm/year, between 67. Ma to 50. Ma; it slowed down dramatically to 5. cm/year during its collision with Asia in Early Eocene (~. 50. Ma). A northern corridor was established between India and Asia soon after the collision allowing faunal interchange. This is reflected by mixed Gondwana and Eurasian elements in the fossil record preserved in several continental Eocene formations of India. A revised India-Asia collision model suggests that the Indus Suture represents the obduction zone between India and the Kohistan-Ladakh Arc, whereas the Shyok-Suture represents the collision between the Kohistan-Ladakh arc and Tibet. Eventually, the Indus-Tsangpo Zone became the locus of the final India-Asia collision, which probably began in Early Eocene (~. 50. Ma) with the closure of Neotethys Ocean. The post-collisional tectonics for the last 50. million years is best expressed in the evolution of the Himalaya-Tibetan orogen. The great thickness of crust beneath Tibet and Himalaya and a series of north vergent thrust zones in the Himalaya and the south-vergent subduction zones in Tibetan Plateau suggest the progressive convergence between India and Asia of about 2500. km since the time of collision. In the early Eohimalayan phase (~. 50 to 25. Ma) of Himalayan orogeny (Middle Eocene-Late Oligocene), thick sediments on the leading edge of the Indian plate were squeezed, folded, and faulted to form the Tethyan Himalaya. With continuing convergence of India, the architecture of the Himalayan-Tibetan orogen is dominated by deformational structures developed in the Neogene Period during the Neohimalayan phase (~. 21. Ma to present), creating a series of north-vergent thrust belt systems such as the Main Central Thrust, the Main Boundary Thrust, and the Main Frontal Thrust to accommodate crustal shortening. Neogene molassic sediment shed from the rise of the Himalaya was deposited in a nearly continuous foreland trough in the Siwalik Group containing rich vertebrate assemblages. Tomographic imaging of the India-Asia orogen reveals that Indian lithospheric slab has been subducted subhorizontally beneath the entire Tibetan Plateau that has played a key role in the uplift of the Tibetan Plateau. The low-viscosity channel flow in response to topographic loading of Tibet provides a mechanism to explain the Himalayan-Tibetan orogen. From the start of its voyage in Southern Hemisphere, to its final impact with the Asia, the Indian plate has experienced changes in climatic conditions both short-term and long-term. We present a series of paleoclimatic maps illustrating the temperature and precipitation conditions based on estimates of Fast Ocean Atmospheric Model (FOAM), a coupled global climate model. The uplift of the Himalaya-Tibetan Plateau above the snow line created two most important global climate phenomena-the birth of the Asian monsoon and the onset of Pleistocene glaciation. As the mountains rose, and the monsoon rains intensified, increasing erosional sediments from the Himalaya were carried down by the Ganga River in the east and the Indus River in the west, and were deposited in two great deep-sea fans, the Bengal and the Indus. Vertebrate fossils provide additional resolution for the timing of three crucial tectonic events: India-KL Arc collision during the Late Cretaceous, India-Asia collision during the Early Eocene, and the rise of the Himalaya during the Early Miocene.

Original languageEnglish
Pages (from-to)238-267
Number of pages30
JournalGondwana Research
Issue number1
StatePublished - Jan 2013


  • Flood basalt volcanism
  • Gondwana
  • Himalaya-Tibetan origin
  • Monsoon
  • Northward motion
  • Rifting and collision
  • Tectonic evolution


Dive into the research topics of 'The longest voyage: Tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia'. Together they form a unique fingerprint.

Cite this