The effects of collector geometry on the internal structure of the 3D nanofiber scaffold fabricated by divergent electrospinning

Yingge Zhou, Zhiyong Hu, Dongping Du, George Z. Tan

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

Latest bioinspired approaches in tissue engineering focus on the creation of biomaterials with micro- and nanoscale topographical features. Various additive manufacturing techniques have been applied for scaffold fabrication; however, creating three dimensional (3D) nanofiber structure within a scaffold remains to be challenging. This paper presented an innovative divergence electrospinning strategy to fabricate 3D polycaprolactone (PCL) scaffolds comprised of uniaxially aligned nanofibers. The effects of collector geometry on the nanofiber structure were characterized by polynomial regression analysis. The length-to-width ratio and inclination angle of the collector were found to be critical to nanofiber distribution within the 3D scaffold. The nanofiber orientation was consistent with the direction of electric field vectors between the two bevels of the collector. After a continuous culturing for 7 days, fibroblast cells were uniaxially organized within the 3D scaffolds, closely resembling the fibrous structure in musculoskeletal tissues. This study provided a novel approach to biomimetic native tissue microstructures and showed a great potential as a future fabrication additive manufacturing platform for tissue engineering.

Original languageEnglish
Pages (from-to)3045-3054
Number of pages10
JournalInternational Journal of Advanced Manufacturing Technology
Volume100
Issue number9-12
DOIs
StatePublished - Feb 25 2019

Keywords

  • 3D nanofiber scaffold
  • Dimensional design
  • Divergence electrospinning
  • Tissue engineering

Fingerprint

Dive into the research topics of 'The effects of collector geometry on the internal structure of the 3D nanofiber scaffold fabricated by divergent electrospinning'. Together they form a unique fingerprint.

Cite this