TY - JOUR
T1 - The effect of post-resistance exercise alcohol ingestion on lipopolysaccharide-stimulated cytokines
AU - Levitt, Danielle E.
AU - Duplanty, Anthony A.
AU - Budnar, Ronald G.
AU - Luk, Hui Ying
AU - Fernandez, Alexander
AU - Layman, Travis J.
AU - Fancher, Daniel L.
AU - Hill, David W.
AU - McFarlin, Brian K.
AU - Vingren, Jakob L.
N1 - Funding Information:
This project was funded in part by grants from the American College of Sports Medicine—Texas Chapter and the National Strength and Conditioning Association.
Publisher Copyright:
© 2015, Springer-Verlag Berlin Heidelberg.
PY - 2016/2/1
Y1 - 2016/2/1
N2 - Purpose: To examine the effect of post-resistance exercise alcohol ingestion on lipopolysaccharide (LPS)-stimulated production of IFNγ, TNF-α, IL-1β, IL-6, IL-8, and IL-10. Methods: Recreationally resistance-trained men (n = 10, 25 ± 3 year, 177 ± 7 cm, 83.8 ± 15.7 kg, 14.8 ± 8.5 % body fat) and women (n = 8, 23 ± 2 year, 161 ± 3 cm, 59.5 ± 6.0 kg, 26.5 ± 3.0 % body fat) completed two identical heavy back squat sessions (6 × 10 at 80 % 1 repetition maximum) followed by ingestion of either an alcohol (ALC; 1.09 g ethanol · kg fat-free mass−1) or water (PLA) drink. Blood samples were collected before exercise (PRE), and at 3 h (3 h), and 5 h (5 h) after exercise, stimulated with LPS, and analyzed for IFNγ, TNF-α, IL-1β, IL-6, IL-8, and IL-10 concentrations. Results: There were no drink conditions by time effects for IFNγ, TNF-α, IL-1β, or IL-10. Regardless of condition, resistance exercise induce an increase in IFNγ, TNF-α, and IL-1β at 5 h compared to PRE but a decrease in IL-10 at 3 and 5 h compared to PRE. For ALC, IL-8 was reduced at 5 h compared to PLA. From PRE to 3 h, IL-6 was reduced for ALC but increased for PLA; resistance exercise induced an increase in IL-6 for both conditions at 5 h. Conclusions: Heavy resistance exercise increased production of IFNγ, TNF-α, IL-1β, and Il-6 and decreased production of IL-10. Alcohol ingestion after resistance exercise affected aspects of inflammatory capacity (IL-6 and IL-8 production). It appears that some of the effects previously observed for alcohol ingestion alone on the LPS-stimulated cytokine production were overwhelmed by the response to resistance exercise.
AB - Purpose: To examine the effect of post-resistance exercise alcohol ingestion on lipopolysaccharide (LPS)-stimulated production of IFNγ, TNF-α, IL-1β, IL-6, IL-8, and IL-10. Methods: Recreationally resistance-trained men (n = 10, 25 ± 3 year, 177 ± 7 cm, 83.8 ± 15.7 kg, 14.8 ± 8.5 % body fat) and women (n = 8, 23 ± 2 year, 161 ± 3 cm, 59.5 ± 6.0 kg, 26.5 ± 3.0 % body fat) completed two identical heavy back squat sessions (6 × 10 at 80 % 1 repetition maximum) followed by ingestion of either an alcohol (ALC; 1.09 g ethanol · kg fat-free mass−1) or water (PLA) drink. Blood samples were collected before exercise (PRE), and at 3 h (3 h), and 5 h (5 h) after exercise, stimulated with LPS, and analyzed for IFNγ, TNF-α, IL-1β, IL-6, IL-8, and IL-10 concentrations. Results: There were no drink conditions by time effects for IFNγ, TNF-α, IL-1β, or IL-10. Regardless of condition, resistance exercise induce an increase in IFNγ, TNF-α, and IL-1β at 5 h compared to PRE but a decrease in IL-10 at 3 and 5 h compared to PRE. For ALC, IL-8 was reduced at 5 h compared to PLA. From PRE to 3 h, IL-6 was reduced for ALC but increased for PLA; resistance exercise induced an increase in IL-6 for both conditions at 5 h. Conclusions: Heavy resistance exercise increased production of IFNγ, TNF-α, IL-1β, and Il-6 and decreased production of IL-10. Alcohol ingestion after resistance exercise affected aspects of inflammatory capacity (IL-6 and IL-8 production). It appears that some of the effects previously observed for alcohol ingestion alone on the LPS-stimulated cytokine production were overwhelmed by the response to resistance exercise.
KW - Alcohol
KW - Inflammation
KW - Lipopolysaccharide
KW - Resistance exercise
UR - http://www.scopus.com/inward/record.url?scp=84955212712&partnerID=8YFLogxK
U2 - 10.1007/s00421-015-3278-6
DO - 10.1007/s00421-015-3278-6
M3 - Article
C2 - 26501345
AN - SCOPUS:84955212712
VL - 116
SP - 311
EP - 318
JO - European Journal of Applied Physiology
JF - European Journal of Applied Physiology
SN - 1439-6319
IS - 2
ER -