The biphase explained: Understanding the asymmetries in coupled fourier components of astronomical time series

Research output: Contribution to journalArticle

11 Scopus citations

Abstract

We make the first attempt to estimate and interpret the biphase data for astronomical time series. The biphase is the phase of the bispectrum, which is the Fourier domain equivalent of the three-point correlation function. The bispectrummeasures two key non-linear properties of a time series-its reversibility in time and the symmetry about the mean of its flux distribution-for triplets of frequencies. Like other Fourier methods, it is especially valuable for working with time series which contain large numbers of cycles at the period of interest, but in which the signal-to-noise ratio at a given frequency is small in any individual cycle, either because of measurement errors, or because of the contributions from signals at other frequencies. This has long been the case for studies of X-ray binaries, but is increasingly becoming true for stellar variability (both intrinsic and due to planetary transits) in the Kepler era. We attempt in this paper also to present some simple examples to give a more intuitive understanding of the meaning of the bispectrum to readers, in order to help to understand where it may be applicable in astronomy. In particular, we give illustrative examples of what biphases may be shown by common astrophysical time series such as pulsars, eclipsers, stars in the instability strip and solar flares. We then discuss applications to the biphase data for understanding the shapes of the quasi-periodic oscillations of GRS 1915+105 and the coupling of the quasi-periodic oscillations to the power-law noise in that system.

Original languageEnglish
Article numberstt1546
Pages (from-to)3547-3558
Number of pages12
JournalMonthly Notices of the Royal Astronomical Society
Volume435
Issue number4
DOIs
StatePublished - Nov 2013

Keywords

  • Methods
  • Stars:Variables:general
  • Statistical
  • X-rays:Binaries

Fingerprint Dive into the research topics of 'The biphase explained: Understanding the asymmetries in coupled fourier components of astronomical time series'. Together they form a unique fingerprint.

  • Cite this