Tectal CRFR1 receptors modulate food intake and feeding behavior in the South African clawed frog Xenopus laevis

Christine M. Prater, Breanna N. Harris, James A. Carr

Research output: Contribution to journalArticle

5 Scopus citations

Abstract

The optic tectum and superior colliculus rapidly inhibit food intake when a visual threat is present. Previous work indicates that CRF, acting on CRFR1 receptors, may play a role in tectal inhibition of feeding behavior and food intake. Here we test the hypothesis that tectal CRFR1 receptors modulate food intake and feeding behavior in juvenile Xenopus laevis. We performed five experiments to test the following questions: 1) Does tectal CRF injection decrease food intake/feeding behavior? 2) Does a selective CRFR1 antagonist block CRF effects on feeding/feeding behavior? 3) Does a reactive stressor decrease food intake/feeding behavior? 4) Does a selective CRFR1 antagonist block reactive stress-induced decrease in feeding/feeding behavior? 5) Does food deprivation increase food intake/feeding behavior? Tectal CRF injections reduced food intake and influenced exploratory behavior, hindlimb kicks, and time in contact with food. These effects were blocked by the selective R1 antagonist NBI-27914. Exposure to a reactive stressor decreased food intake and this effect was blocked by NBI-27914. Neither food intake or feeding behavior changed following 1 wk of food deprivation. Overall, we conclude that activation of tectal CRFR1 inhibits food intake in juvenile X. laevis. Furthermore, tectal CRFR1 receptors appear to be involved in the reduction of food intake that occurs in response to a reactive stressor.

Original languageEnglish
Pages (from-to)86-94
Number of pages9
JournalHormones and Behavior
Volume105
DOIs
StatePublished - Sep 2018

Keywords

  • Amphibian
  • Feeding
  • Foraging
  • Multisensory
  • Optic tectum
  • Stress
  • Vision

Fingerprint Dive into the research topics of 'Tectal CRFR1 receptors modulate food intake and feeding behavior in the South African clawed frog Xenopus laevis'. Together they form a unique fingerprint.

  • Cite this