Abstract
Highly crystalline zinc cobaltite (ZnCo 2O 4) nanocrystals were successfully synthesized through an epoxide driven, sol-gel method using Zn(NO 3)·6H 2O and CoCl 2·6H 2O as precursors. The crystal phase, morphology, specific surface areas, porosity, and capacitance activity of the prepared materials were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), gas sorption techniques, and cyclic voltammetry, respectively. Results reveal that the synthesized nanocrystals are ∼4 nm in diameter. Electron microscopy studies illustrate significant changes brought on by varying the solvent and epoxide. Gas sorption analyses detail high specific surface areas (>200 m 2 g -1) and porosities of the as prepared and annealed samples. Cyclic voltammetry experiments show that these zinc cobaltite nanocrystals have exceptional capacitance (∼700 Fg -1) and excellent cycle durability making them an excellent electrode material for supercapacitors.
Original language | English |
---|---|
Pages (from-to) | 2061-2066 |
Number of pages | 6 |
Journal | RSC Advances |
Volume | 2 |
Issue number | 5 |
DOIs | |
State | Published - Mar 7 2012 |