TY - JOUR
T1 - Symmetry-breaking effects on time-dependent dynamics
T2 - Correct differential cross sections and other properties in H+ + C2H4 at: E Lab = 30 eV
AU - McLaurin, Patrick M.
AU - Merritt, Ryan
AU - Dominguez, Juan C.
AU - Teixeira, Erico S.
AU - Morales, Jorge A.
N1 - Funding Information:
Present calculations were performed at the TTU High Performance Computer Center (TTU HPCC) and the Texas Advanced Computing Center (TACC) at the University of Texas at Austin; the authors thank those centers for providing free computer time. EST acknowledges financial support of his postdoctoral research from the Science without Borders program of the National Council for Scientific and Technological Development (CNPq) of Brazil. PMM and JAM acknowledge partial financial support from the Dean’s Office of the College of Arts and Sciences at TTU. This material is based upon work primarily supported by the grant RP140478 from the Cancer Prevention and Research Institute of Texas (CPRIT).
Publisher Copyright:
© 2019 the Owner Societies.
PY - 2019
Y1 - 2019
N2 - We present a computational procedure that introduces low degrees of symmetry breaking into a restricted Hartree-Fock (RHF) state in order to induce higher symmetry breaking during the state's subsequent dynamics. The symmetries herein considered are those of electronic HF states as classified by Fukutome; those symmetries affect bond dissociations and internal rotations among other phenomena. Therefore, this investigation extends a part of Fukutome's time-independent analysis of symmetry breaking to the time-dependent (dynamical) regime. The procedure is formulated in the framework of the simplest-level electron nuclear dynamics, a time-dependent, variational, on-the-fly and non-adiabatic method that employs classical dynamics for the nuclei and a Thouless single-determinantal state for the electrons. We test this procedure on the H+ + C2H4 reaction at 30 eV due to its conspicuous display of symmetry-breaking effects; this reaction is relevant in astrophysics and proton cancer therapy. Fukutome's axial spin density wave (ASDW) HF state is used to represent the symmetry-broken initial states. Through a Thouless parameter, small degrees of symmetry breaking are introduced into the initial ASDW states in a controlled manner. After starting the dynamics from those states, higher degrees of symmetry breaking emerge or not as determined by the direct-dynamics equations without external interventions. Simulations starting from symmetry-conforming states preserve symmetry features during dynamics, whereas simulations starting from symmetry-broken states display an upsurge of symmetry breaking when the reactants collide. Initial symmetry breaking increases the total integral cross sections of collision-induced fragmentations and of target-to-proton 1-electron-transfer reactions and decreases the scattering angle function and primary rainbow angle of the outgoing projectile. Remarkably, symmetry-breaking simulations reproduce the correct relative order and values of the experimental 0- and 1-electron-transfer differential cross sections, whereas symmetry-conforming simulations predict incorrect order and values. Our calculated scattering angle functions and differential cross sections also exhibit expected primary and secondary rainbow angle features that experiments fail to detect. A detailed discussion on the description of symmetry-breaking processes with the ASDW and Thouless states is included to provide a rigorous theoretical basis for this investigation.
AB - We present a computational procedure that introduces low degrees of symmetry breaking into a restricted Hartree-Fock (RHF) state in order to induce higher symmetry breaking during the state's subsequent dynamics. The symmetries herein considered are those of electronic HF states as classified by Fukutome; those symmetries affect bond dissociations and internal rotations among other phenomena. Therefore, this investigation extends a part of Fukutome's time-independent analysis of symmetry breaking to the time-dependent (dynamical) regime. The procedure is formulated in the framework of the simplest-level electron nuclear dynamics, a time-dependent, variational, on-the-fly and non-adiabatic method that employs classical dynamics for the nuclei and a Thouless single-determinantal state for the electrons. We test this procedure on the H+ + C2H4 reaction at 30 eV due to its conspicuous display of symmetry-breaking effects; this reaction is relevant in astrophysics and proton cancer therapy. Fukutome's axial spin density wave (ASDW) HF state is used to represent the symmetry-broken initial states. Through a Thouless parameter, small degrees of symmetry breaking are introduced into the initial ASDW states in a controlled manner. After starting the dynamics from those states, higher degrees of symmetry breaking emerge or not as determined by the direct-dynamics equations without external interventions. Simulations starting from symmetry-conforming states preserve symmetry features during dynamics, whereas simulations starting from symmetry-broken states display an upsurge of symmetry breaking when the reactants collide. Initial symmetry breaking increases the total integral cross sections of collision-induced fragmentations and of target-to-proton 1-electron-transfer reactions and decreases the scattering angle function and primary rainbow angle of the outgoing projectile. Remarkably, symmetry-breaking simulations reproduce the correct relative order and values of the experimental 0- and 1-electron-transfer differential cross sections, whereas symmetry-conforming simulations predict incorrect order and values. Our calculated scattering angle functions and differential cross sections also exhibit expected primary and secondary rainbow angle features that experiments fail to detect. A detailed discussion on the description of symmetry-breaking processes with the ASDW and Thouless states is included to provide a rigorous theoretical basis for this investigation.
UR - http://www.scopus.com/inward/record.url?scp=85062268081&partnerID=8YFLogxK
U2 - 10.1039/c8cp07529h
DO - 10.1039/c8cp07529h
M3 - Article
C2 - 30762051
AN - SCOPUS:85062268081
VL - 21
SP - 5006
EP - 5021
JO - Physical Chemistry Chemical Physics
JF - Physical Chemistry Chemical Physics
SN - 1463-9076
IS - 9
ER -