Susceptibility of Escherichia coli isolated from uteri of postpartum dairy cows to antibiotic and environmental bacteriophages. Part II: In vitro antimicrobial activity evaluation of a bacteriophage cocktail and several antibiotics

T. M.A. Santos, R. O. Gilbert, L. S. Caixeta, V. S. Machado, L. M. Teixeira, R. C. Bicalho

Research output: Contribution to journalArticle

27 Scopus citations

Abstract

The use of pathogenic-specific antimicrobials, as proposed by bacteriophage therapy, is expected to reduce the incidence of resistance development. Eighty Escherichia coli isolated from uteri of Holstein dairy cows were phenotypically characterized for antimicrobial resistance to ampicillin, ceftiofur, chloramphenicol, florfenicol, spectinomycin, streptomycin, and tetracycline by broth microdilution method. The lytic activity of a bacteriophage cocktail against all isolates was performed by a similar method. Additionally, the effect of different concentrations of antimicrobials and multiplicities of infections (MOI) of the bacteriophage cocktail on E. coli growth curve was measured. Isolates exhibited resistance to ampicillin (33.7%), ceftiofur (1.2%), chloramphenicol (100%), and florfenicol (100%). All strains were resistant to at least 2 of the antimicrobial agents tested; multidrug resistance (≥3 of 7 antimicrobials tested) was observed in 35% of E. coli isolates. The major multidrug resistance profile was found for ampicillin-chloramphenicol-florfenicol, which was observed in more than 96.4% of the multidrug-resistant isolates. The bacteriophage cocktail preparation showed strong antimicrobial activity against multidrug-resistant E. coli. Multiplicity of infection as low as 10-4 affected the growth of the E. coli isolates. The ratio of 10 bacteriophage particles per bacterial cell (MOI=101) was efficient in inhibiting at least 50% of all isolates. Higher MOI should be tested in future in vitro studies to establish ratios that completely inhibit bacterial growth during longer periods. All isolates resistant to florfenicol were resistant to chloramphenicol and, because florfenicol was recently introduced into veterinary clinics, this finding suggests that the selection pressure of chloramphenicol, as well as other antimicrobials, may still play a relevant role in the emergence and dissemination of florfenicol resistance in E. coli. The bacteriophage cocktail had a notable capacity to inhibit the in vitro growth of E. coli isolates, and it may be an attractive alternative to conventional treatment of metritis by reducing E. coli in uteri of postpartum dairy cows.

Original languageEnglish
Pages (from-to)105-114
Number of pages10
JournalJournal of Dairy Science
Volume93
Issue number1
DOIs
StatePublished - Jan 2010

Keywords

  • Antimicrobial resistance
  • Bacteriophage therapy
  • Dairy cow
  • Metritis

Fingerprint Dive into the research topics of 'Susceptibility of Escherichia coli isolated from uteri of postpartum dairy cows to antibiotic and environmental bacteriophages. Part II: In vitro antimicrobial activity evaluation of a bacteriophage cocktail and several antibiotics'. Together they form a unique fingerprint.

Cite this