TY - GEN
T1 - Study of living cell distribution during inkjet printing of bioink
AU - Zhang, Mengyun
AU - Song, Hongtao
AU - Krishnamoorthy, Srikumar
AU - Xu, Changxue
N1 - Publisher Copyright:
Copyright © 2017 ASME.
PY - 2017
Y1 - 2017
N2 - Inkjet printing as a viable technology has been widely adapted for various biomedical applications, such as 3D biofabrication which utilizes the droplets generated from inkjet printing of bioink to build 3D viable structures. One of the key challenges is cell distribution which is cell number embedded per droplet/microsphere. It significantly affects the post-printing cell viability and proliferation. This paper focuses on the effect of excitation voltage on the living cell distribution during drop-ondemand inkjet printing of bioink containing living cells. The cell distribution results are compared under two different excitation voltages of 40V and 50V. The normal distribution is used to fit the experimental results. It is found that 1) at both 40V and 50V, the mean cell number of the experimental results is always smaller than the theoretical value due to cell motion inside the nozzle; and 2) the mean cell number errors are 3% at 40V and 18% at 50V, which is due to different ligament flow near the nozzle orifice. The resulting knowledge benefits efficient and effective fabrication of 3D cellular constructs with uniform cell distribution.
AB - Inkjet printing as a viable technology has been widely adapted for various biomedical applications, such as 3D biofabrication which utilizes the droplets generated from inkjet printing of bioink to build 3D viable structures. One of the key challenges is cell distribution which is cell number embedded per droplet/microsphere. It significantly affects the post-printing cell viability and proliferation. This paper focuses on the effect of excitation voltage on the living cell distribution during drop-ondemand inkjet printing of bioink containing living cells. The cell distribution results are compared under two different excitation voltages of 40V and 50V. The normal distribution is used to fit the experimental results. It is found that 1) at both 40V and 50V, the mean cell number of the experimental results is always smaller than the theoretical value due to cell motion inside the nozzle; and 2) the mean cell number errors are 3% at 40V and 18% at 50V, which is due to different ligament flow near the nozzle orifice. The resulting knowledge benefits efficient and effective fabrication of 3D cellular constructs with uniform cell distribution.
UR - http://www.scopus.com/inward/record.url?scp=85027877463&partnerID=8YFLogxK
U2 - 10.1115/MSEC20172921
DO - 10.1115/MSEC20172921
M3 - Conference contribution
AN - SCOPUS:85027877463
T3 - ASME 2017 12th International Manufacturing Science and Engineering Conference, MSEC 2017 collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing
BT - Bio and Sustainable Manufacturing
PB - American Society of Mechanical Engineers
T2 - ASME 2017 12th International Manufacturing Science and Engineering Conference, MSEC 2017 collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing
Y2 - 4 June 2017 through 8 June 2017
ER -