Abstract
Phonon polaritons (PhPs) are long-lived electromagnetic modes that originate from the coupling of infrared (IR) photons with the bound ionic lattice of a polar crystal. Cubic-boron nitride (cBN) is such a polar, semiconductor material which, due to the light atomic masses, can support high-frequency optical phonons. Here we report on random arrays of cBN nanostructures fabricated via an unpatterned reactive ion etching process. Fourier-transform infrared reflection spectra suggest the presence of localized surface PhPs within the reststrahlen band, with quality factors in excess of 38 observed. These can provide the basis of next-generation IR optical components such as antennas for communication, improved chemical spectroscopies, and enhanced emitters, sources, and detectors.
Original language | English |
---|---|
Pages (from-to) | 2177-2180 |
Number of pages | 4 |
Journal | Optics Letters |
Volume | 43 |
Issue number | 9 |
DOIs | |
State | Published - May 1 2018 |