TY - JOUR
T1 - Streptolysin O clearance through sequestration into blebs that bud passively from the plasma membrane
AU - Keyel, Peter
AU - Loultcheva, L.b
AU - Roth, R.b
AU - Salter, R.D.c
AU - Watkins, S.C.d
AU - Yokoyama, W.M.a
AU - Heuser, J.E.b e
PY - 2011
Y1 - 2011
N2 - Cells survive exposure to bacterial pore-forming toxins, such as streptolysin O (SLO), through mechanisms that remain unclear. Previous studies have suggested that these toxins are cleared by endocytosis. However, the experiments reported here failed to reveal any evidence for endocytosis of SLO, nor did they reveal any signs of damage to endosomal membranes predicted from such endocytosis. Instead, we illustrate that SLO induces a characteristic form of plasma membrane blebbing that allows cells to shed SLO by the process known as ectocytosis. Specifically, ’deep-etch’ electron microscopy of cells exposed to SLO illustrates that the toxin is rapidly sequestered into domains in the plasmalemma greatly enriched in SLO pores, and these domains bleb outwards and bud from the cell surface into the medium. Such ectocytosis is even observed in cells that have been chemically fixed before exposure to SLO, suggesting that it is caused by a direct physical action of the toxin on the cell membr
AB - Cells survive exposure to bacterial pore-forming toxins, such as streptolysin O (SLO), through mechanisms that remain unclear. Previous studies have suggested that these toxins are cleared by endocytosis. However, the experiments reported here failed to reveal any evidence for endocytosis of SLO, nor did they reveal any signs of damage to endosomal membranes predicted from such endocytosis. Instead, we illustrate that SLO induces a characteristic form of plasma membrane blebbing that allows cells to shed SLO by the process known as ectocytosis. Specifically, ’deep-etch’ electron microscopy of cells exposed to SLO illustrates that the toxin is rapidly sequestered into domains in the plasmalemma greatly enriched in SLO pores, and these domains bleb outwards and bud from the cell surface into the medium. Such ectocytosis is even observed in cells that have been chemically fixed before exposure to SLO, suggesting that it is caused by a direct physical action of the toxin on the cell membr
M3 - Article
SP - 2414
EP - 2423
JO - Journal of Cell Science
JF - Journal of Cell Science
ER -