TY - JOUR
T1 - Steroidal Metabolites Transformed by Marchantia polymorpha Cultures Block Breast Cancer Estrogen Biosynthesis
AU - Hegazy, Mohamed Elamir F.
AU - Gamal-Eldeen, Amira M.
AU - El-Halawany, Ali M.
AU - Mohamed, Abou El Hamd H.
AU - Paré, Paul W.
N1 - Funding Information:
Acknowledgments This study was funded by the National Research Center, Cairo, Egypt.
PY - 2012/5
Y1 - 2012/5
N2 - Suspension of cultured cells of Marchantia polymorpha have the potential to hydrogenate the olefinic bonds present in androst-1,4-dien-3,17-dione (boldione, 1) to afford dihydroandrost-3,17-dione derivatives including: androst-4-ene-3,17-dione (androstenedione, 4-AD, 2), 5α-androstane-3,17-dione (androstenedione, AD, 4), and the less abundant metabolite 5α-androst-1-ene-3,17-dione (1-androstenedione, 1-AD, 3). After isolation and purification, these metabolites were characterized on the basis of spectroscopic analyses using 1D and 2D NMR as well as mass spectrometry. Cytotoxicity of the biotransformation products against breast adenocarcinoma cells (MCF-7) was assessed by a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay and cell death (apoptosis or necrosis) was assayed by acridine orange/ethidium bromide staining. Aromatase (cytochrome P450 19 enzyme, CYP19) inhibitory activity was measured by a tritiated water release assay and by direct measurement of bio-transformed steroids using the tritium labeled substrate 3H-androst-4-ene-3,17-dione. CYP19 mRNA expression in MCF-7 cells was analyzed by real-time PCR. Steroidal products 3 and 4 revealed a highly significant inhibition of MCF-7 cell growth that was predominantly due to apoptosis not necrosis. Steroidal products 3 and 4 are both potent inhibitors of aromatase activity and CYP19 mRNA expression, while 2 is a known substrate for aromatase. These data establish that metabolites 3 and 4 are potent chemical agents against breast cancer via aromatase inhibitory mechanism. Results were interpreted via virtual docking of the biotransformation products to the human placental aromatase active site.
AB - Suspension of cultured cells of Marchantia polymorpha have the potential to hydrogenate the olefinic bonds present in androst-1,4-dien-3,17-dione (boldione, 1) to afford dihydroandrost-3,17-dione derivatives including: androst-4-ene-3,17-dione (androstenedione, 4-AD, 2), 5α-androstane-3,17-dione (androstenedione, AD, 4), and the less abundant metabolite 5α-androst-1-ene-3,17-dione (1-androstenedione, 1-AD, 3). After isolation and purification, these metabolites were characterized on the basis of spectroscopic analyses using 1D and 2D NMR as well as mass spectrometry. Cytotoxicity of the biotransformation products against breast adenocarcinoma cells (MCF-7) was assessed by a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay and cell death (apoptosis or necrosis) was assayed by acridine orange/ethidium bromide staining. Aromatase (cytochrome P450 19 enzyme, CYP19) inhibitory activity was measured by a tritiated water release assay and by direct measurement of bio-transformed steroids using the tritium labeled substrate 3H-androst-4-ene-3,17-dione. CYP19 mRNA expression in MCF-7 cells was analyzed by real-time PCR. Steroidal products 3 and 4 revealed a highly significant inhibition of MCF-7 cell growth that was predominantly due to apoptosis not necrosis. Steroidal products 3 and 4 are both potent inhibitors of aromatase activity and CYP19 mRNA expression, while 2 is a known substrate for aromatase. These data establish that metabolites 3 and 4 are potent chemical agents against breast cancer via aromatase inhibitory mechanism. Results were interpreted via virtual docking of the biotransformation products to the human placental aromatase active site.
KW - Androst-1,4-dien-3,17-dione
KW - Anticancer activity
KW - Aromatase inhibitory activity
KW - Cultured plant cells
KW - Hydrogenation
UR - http://www.scopus.com/inward/record.url?scp=84859878159&partnerID=8YFLogxK
U2 - 10.1007/s12013-012-9343-4
DO - 10.1007/s12013-012-9343-4
M3 - Article
C2 - 22350385
AN - SCOPUS:84859878159
SN - 1085-9195
VL - 63
SP - 85
EP - 96
JO - Cell Biochemistry and Biophysics
JF - Cell Biochemistry and Biophysics
IS - 1
ER -