Standardized precipitation evaporation index (SPEI)-based drought assessment in semi-arid south Texas

E. Annette Hernandez, Venkatesh Uddameri

Research output: Contribution to journalArticlepeer-review

86 Scopus citations


The coastal semi-arid region of south Texas is known for its erratic climate that fluctuates between long periods of drought and extremely wet hurricane-induced storms. The standard precipitation index (SPI) and the standard precipitation evaporation index (SPEI) were used in this study in conjunction with precipitation and temperature projections from two general circulation models (GCMs), namely, the National Center for Atmospheric Research (NCAR) Parallel Climate Model (PCM) and the UK Meteorological Office Hadley Centre model (HCM) for two emission scenarios-A1B (~720 ppm CO2 stabilization) and B1 (~550 ppm CO2 stabilization) at six major urban centers of south Texas spanning five climatic zones. Both the models predict a progressively increasing aridity of the region throughout the twenty-first century. The SPI exhibits greater variability in the available moisture during the first half of the twenty-first century while the SPEI depicts a downward trend caused by increasing temperature. However, droughts during the latter half of the twenty-first century are due to both increasing temperature and decreasing precipitation. These results suggest that droughts during the first half of the twenty-first century are likely caused by meteorological demands (temperature or potential evapotranspiration (PET) controlled), while those during the latter half are likely to be more critical as they curtail moisture supply to the region over large periods of time (precipitation and PET controlled). The drought effects are more pronounced for the A1B scenario than the B1 scenario and while spatial patterns are not always consistent, the effects are generally felt more strongly in the hinterlands than in coastal areas. The projected increased warming of the region, along with potential decreases in precipitation, points toward increased reliance on groundwater resources which are noted to be a buffer against droughts. However, there is a need for human adaptation to climate change, a greater commitment to groundwater conservation and development of large-scale regional aquifer storage and recovery (ASR) facilities that are capable of long-term storage in order to sustain groundwater availability. Groundwater resource managers and planners must confront the possibility of an increased potential for prolonged (multi-year) droughts and develop innovative strategies that effectively integrate water augmentation technologies and conservation-oriented policies to ensure the sustainability of aquifer resources well into the next century.

Original languageEnglish
Pages (from-to)2491-2501
Number of pages11
JournalEnvironmental Earth Sciences
Issue number6
StatePublished - Mar 2014


  • Climate change
  • Downscaling
  • Evapotranspiration
  • Global circulation model
  • Global warming
  • Thornthwaite method


Dive into the research topics of 'Standardized precipitation evaporation index (SPEI)-based drought assessment in semi-arid south Texas'. Together they form a unique fingerprint.

Cite this