Species- and Tissue-Specific Avian Chronic Toxicity Values for Perfluorooctane Sulfonate (PFOS) and a Binary Mixture of PFOS and Perfluorohexane Sulfonate

Nicole M. Dennis, Seenivasan Subbiah, Adcharee Karnjanapiboonwong, Michael L. Dennis, Chris McCarthy, Christopher J. Salice, Todd A. Anderson

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

To further characterize avian toxicity to environmental levels of select per- and poly-fluoroalkyl substances (PFAS), we established species- and tissue-specific PFAS chronic toxicity values (CTVs) associated with a lowest-observable–adverse effect level (LOAEL) threshold previously established for northern bobwhite quail (Colinus virginianus) chronically orally exposed via drinking water to either perfluorooctane sulfonate (PFOS) or a simple PFAS mixture. Aided by advances in analytical techniques, the novel avian oral PFAS CTVs reported in the present study are lower than the previously reported toxicity reference values (TRVs) estimated for birds chronically exposed via feed. Thus, current avian PFOS TRVs may not be fully protective of wild avian populations at PFAS-impacted sites. Also, likely due to differences in bioavailability, bioaccessibility, and toxicokinetics among individual PFAS between oral exposure types, we found higher bioaccumulation factors in all assessed tissues from birds exposed via water versus feed. Thus, we propose that future characterization of chemical toxicity due to ingestion exposure initially include a full examination of all probable sources of oral exposure for the most accurate derivation of TRVs and a more complete picture of ecological risk. The avian PFAS LOAEL CTVs established in the present study can be modified with the use of uncertainty factors to derive site-specific avian TRVs for ecological risk assessment at PFAS-impacted sites. From differences observed in the behavior of PFOS when administered as either a single chemical or part of a binary mixture with perfluorohexane sulfonate (PFHxS), we verified that PFOS was absorbed and distributed differently when coadministered with PFHxS and that PFOS likely interacted with PFHxS differently among tissues, helping to explain the differences observed in avian toxicity between exposures. Environ Toxicol Chem 2021;40:899–909.

Original languageEnglish
Pages (from-to)899-909
Number of pages11
JournalEnvironmental Toxicology and Chemistry
Volume40
Issue number3
DOIs
StatePublished - Mar 2021

Keywords

  • Analytical chemistry
  • Avian toxicity
  • Bioaccumulative compounds
  • Mixture toxicology
  • Perfluoroalkyl substance
  • Risk assessment

Fingerprint Dive into the research topics of 'Species- and Tissue-Specific Avian Chronic Toxicity Values for Perfluorooctane Sulfonate (PFOS) and a Binary Mixture of PFOS and Perfluorohexane Sulfonate'. Together they form a unique fingerprint.

Cite this