Solvation of dimethyl succinate in a sodium hydroxide aqueous solution. A computational study

Xiuquan Sun, Tsun Mei Chang, Yang Cao, Satomi Niwayama, William L. Hase, Liem X. Dang

Research output: Contribution to journalArticle

6 Scopus citations

Abstract

Molecular dynamics simulations were carried out to study dimethyl succinate/water/NaOH solutions. The potential of mean force method was used to determine the transport mechanism of a dimethyl succinate (a diester) molecule across the aqueous/vapor interface. The computed number density profiles show a strong propensity for the diester molecules to congregate at the interface, with the solubility of the diester increasing with increasing NaOH concentration. It is observed that the major contribution to the interfacial solvation free-energy minimum is from electrostatic interactions. Even at higher NaOH concentrations, the increasing electrostatic interaction between the diester and ions is not large enough to favor the solvation of diester in bulk solutions. The calculated solvation free energies are found to be -2.6 to -3.5 kcal/mol in variant concentrations of NaOH aqueous solutions. These values are in qualitative agreement with the corresponding experimental measurements. The computed surface potential indicates that the contribution of diester molecules to the total surface potential is about 25%, with the major contribution from interfacial water molecules.

Original languageEnglish
Pages (from-to)6473-6477
Number of pages5
JournalJournal of Physical Chemistry B
Volume113
Issue number18
DOIs
StatePublished - May 7 2009

Fingerprint Dive into the research topics of 'Solvation of dimethyl succinate in a sodium hydroxide aqueous solution. A computational study'. Together they form a unique fingerprint.

  • Cite this