TY - JOUR
T1 - Soil microbial communities in corn fields treated with atoxigenic aspergillus flavus
AU - Bhandari, Krishna B.
AU - Longing, Scott D.
AU - West, Charles P.
N1 - Funding Information:
Funding: This research was partially funded by the Texas Corn Producers Board (TCPB) under the 2019 Aflatoxin Research Program; https://texascorn.org.
Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020/6
Y1 - 2020/6
N2 - Aspergillus flavus refers to a diverse group of saprophytic soil fungi that includes strains producing aflatoxins (toxigenic strains) in the kernels of corn (Zea mays L.) and other crops, causing pre-harvest and post-harvest aflatoxin contamination. Some A. flavus strains are atoxigenic, and the introduction of such strains into the crop environment helps reduce toxigenic aflatoxin contamination. Corn growers in Texas have used the product FourSure™, which contains four atoxigenic strains of A. flavus; however, effects on soil microbial communities associated with these applications are unknown. We compared soil fungal and bacterial communities in corn fields treated with FourSure™ to nearby untreated (control) corn fields in Texas during the summer of 2019. Analysis of soil microbial community structure showed that total fatty acid methyl esters (FAMEs), fungal, and bacterial populations were not significantly different (p = 0.31) between the FourSure™-treated and control fields, yet corn fields located in the northern counties had more (p < 0.05) Gram—bacteria, actinobacteria, and total bacteria than fields in the southernmost county. The Gram—bacteria and actinobacteria were positively correlated (p = 0.04; r = 0.48 and 0.49, respectively) with soil water content. Similar fungal and bacterial abundances between FourSure™-treated and control fields indicated that atoxigenic A. flavus had no negative effects on soil microbial communities.
AB - Aspergillus flavus refers to a diverse group of saprophytic soil fungi that includes strains producing aflatoxins (toxigenic strains) in the kernels of corn (Zea mays L.) and other crops, causing pre-harvest and post-harvest aflatoxin contamination. Some A. flavus strains are atoxigenic, and the introduction of such strains into the crop environment helps reduce toxigenic aflatoxin contamination. Corn growers in Texas have used the product FourSure™, which contains four atoxigenic strains of A. flavus; however, effects on soil microbial communities associated with these applications are unknown. We compared soil fungal and bacterial communities in corn fields treated with FourSure™ to nearby untreated (control) corn fields in Texas during the summer of 2019. Analysis of soil microbial community structure showed that total fatty acid methyl esters (FAMEs), fungal, and bacterial populations were not significantly different (p = 0.31) between the FourSure™-treated and control fields, yet corn fields located in the northern counties had more (p < 0.05) Gram—bacteria, actinobacteria, and total bacteria than fields in the southernmost county. The Gram—bacteria and actinobacteria were positively correlated (p = 0.04; r = 0.48 and 0.49, respectively) with soil water content. Similar fungal and bacterial abundances between FourSure™-treated and control fields indicated that atoxigenic A. flavus had no negative effects on soil microbial communities.
KW - Aflatoxin-treated corn
KW - Aspergillus flavus
KW - Atoxigenic aflatoxin
KW - Soil health
KW - Soil microbial community
UR - http://www.scopus.com/inward/record.url?scp=85088014370&partnerID=8YFLogxK
U2 - 10.3390/soilsystems4020035
DO - 10.3390/soilsystems4020035
M3 - Article
AN - SCOPUS:85088014370
SN - 2571-8789
VL - 4
SP - 1
EP - 9
JO - Soil Systems
JF - Soil Systems
IS - 2
M1 - 35
ER -