Single Crystal Growth of Millimeter-Sized Monoisotopic Hexagonal Boron Nitride

Song Liu, Rui He, Lianjie Xue, Jiahan Li, Bin Liu, James H. Edgar

Research output: Contribution to journalArticlepeer-review

91 Scopus citations


Hexagonal boron nitride (hBN) with a single boron isotope have many enhanced physical, thermal and optical properties compared to the most common hBN with the natural distribution of boron (19.9 at. % 10B and 80.1 at. % 11B). These property differences can significantly improve the device performance in applications, such as neutron detectors, nanoscale electronics, and optical components. In this study, a new method for the growth of large-scale, high-quality monoisotopic hBN single crystals, i.e., h10BN and h11BN, was developed. hBN single crystals were grown using a nickel-chromium solvent and pure boron and nitrogen sources at atmospheric pressure. The clear and colorless crystals have a maximum domain size of around 1 mm. Raman measurements demonstrate that the crystals produced with this method are pure hBN phase with low defect density, and the spectral peaks vary with the boron isotope concentrations. X-ray photoelectron spectroscopy spectra show that the B-N bond in h11BN is slightly stronger than that in h10BN. The ability to produce crystals in this manner opens the door to isotopically engineering the properties and performance of hBN devices.

Original languageEnglish
Pages (from-to)6222-6225
Number of pages4
JournalChemistry of Materials
Issue number18
StatePublished - Sep 25 2018


Dive into the research topics of 'Single Crystal Growth of Millimeter-Sized Monoisotopic Hexagonal Boron Nitride'. Together they form a unique fingerprint.

Cite this