Siderophile elements in silicate melts - A review of the mechanically assisted equilibration technique and the nanonugget issue

Werner Ertel, Donald B. Dingwell, Paul J. Sylvester

Research output: Contribution to journalArticlepeer-review

52 Scopus citations

Abstract

Solubilities for a wide range of siderophile elements (SE: Ni, W, Re, Ir, Os, Pt, Rh) have been determined in a haplobasaltic melt composition (An42Di58) using the mechanically assisted equilibration (MAE) technique. Here we present a review of the data obtained and the experience gained over the past decade using this approach. In particular, the major experimental and analytical challenges encountered (and inferred to result from so-called "nanonugget" formation) are described. After a general background overview of siderophile element solubility experiments, the experimental (MAE) and analytical techniques are described. Major element composition was routinely determined by electron microprobe analyses (EMP), whereas trace elements were determined using a wide variety of analytical techniques (Ni, W: INAA, EMP, ICP-AES; Re, Ir, Pt, Rh and Os: INAA, SIMS, dissolution- (diss-ICPMS) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS)). The last technique, in particular, has demonstrated its powerful capabilities for micro-analyses, supplying information on both absolute trace element concentrations and on small scale heterogeneities in run products. All investigated SEs exhibit solubilities whose systematic variation with oxygen fugacity (fO2) is consistent with their presence as stoichiometrically dissolved oxide species in the melt phase. There is no indication of zero-valence species dissolved at any fO2 condition. In the case of highly-SE (HSE: Pt, Rh, Re, Os, Ir), INAA results appear to indicate a decrease of HSE solubility with decreasing fO2 down to a fO2 limit which depends on the investigated HSE. Below this limit, bulk HSE concentrations remain either constant with large variations or increase with further fO2 decrease. Duplicate analyses of samples by LA-ICPMS reveal increasing amounts of so-called nanonuggets with decreasing fO2, which lead to high HSE concentrations in the glass samples obtained by bulk analytical methods such as INAA. The formation of HSE (and potentially some SE) nanonuggets in low fO2 samples raises the question of whether nanonuggets are formed either during the quench by precipitation from precursor species dissolved homogeneously in the melts, or are precipitated in situ at high temperature due to true thermodynamic oversaturation. The combination of the MAE technique with LA-ICPMS micro-analytical methods has enabled us to extend our knowledge of the solubility behaviour of HSE to unprecedentedly low fO2 values. Clarification of the solubility mechanism for SE as well as the nanonugget issue, however, will undoubtedly require further novel experimental designs.

Original languageEnglish
Pages (from-to)119-139
Number of pages21
JournalChemical Geology
Volume248
Issue number3-4
DOIs
StatePublished - Feb 28 2008

Keywords

  • Accretion of terrestrial planets
  • Core/mantle segregation
  • Experimental petrology
  • Highly siderophile elements solubilities
  • LA-ICPMS and nanonuggets
  • Mechanically assisted equilibration technology

Fingerprint

Dive into the research topics of 'Siderophile elements in silicate melts - A review of the mechanically assisted equilibration technique and the nanonugget issue'. Together they form a unique fingerprint.

Cite this