Selenofolate inhibits the proliferation of IGROV1 cancer cells independently from folate receptor alpha

Ali Razaghi, Antje Maria Zickler, Julian Spallholz, Gilbert Kirsch, Mikael Björnstedt

Research output: Contribution to journalArticlepeer-review

Abstract

Cancer is one of the main causes of human mortality worldwide and novel chemotherapeutics are required due to the limitations of conventional cancer therapies. For example, using redox selenium compounds as novel chemotherapeutics seem to be very promising. The objective of this study was to explore if folate could be used as a carrier to deliver a newly synthesised selenium derivative selenofolate into cancer cells. Particularly, the cytotoxic effects of this selenofolate compound were investigated in a variety of cancer cell types including lung, liver, and cervical cancers and specifically IGROV1 cells. Our results showed that selenofolate inhibits the growth of cancer cells in-vitro. However, despite the expectations, folate receptor alpha (FRα) was not involved in the transportation of selenofolate compound into the cells i.e. growth inhibition was independent of FRα, suggesting that multiple transporters (e.g. reduced folate carrier-1) are possibly involved in the delivery and internalisation of folate in IGROV1 cells. Additionally, selenofolate did not exert cell death through apoptosis. Instead, anti-proliferative activity showed to be the main cause of growth inhibition of selenolofate in the IGROV1 cell line. In conclusion, selenofolate inhibits the growth of cancer cells and thus, may be explored further as a potential chemotherapeutic agent.

Original languageEnglish
Article numbere07254
JournalHeliyon
Volume7
Issue number6
DOIs
StatePublished - Jun 2021

Keywords

  • Cancer
  • Folate
  • Folate receptor
  • Selenofolate
  • Selenotherapy

Fingerprint

Dive into the research topics of 'Selenofolate inhibits the proliferation of IGROV1 cancer cells independently from folate receptor alpha'. Together they form a unique fingerprint.

Cite this