TY - JOUR
T1 - Selective turn-on ammonia sensing enabled by high-temperature fluorescence in metal-organic frameworks with open metal sites.
AU - Shustova, Natalia B
AU - Cozzolino, Anthony
AU - Reineke, Sebastian
AU - Baldo, Marc
AU - Dinca, Mircea
PY - 2013/8/30
Y1 - 2013/8/30
N2 - We show that fluorescent molecules incorporated as ligands in rigid, porous metal–organic frameworks (MOFs) maintain their fluorescence response to a much higher temperature than in molecular crystals. The remarkable high-temperature ligand-based fluorescence, demonstrated here with tetraphenylethylene- and dihydroxyterephthalate-based linkers, is essential for enabling selective and rapid detection of analytes in the gas phase. Both Zn2(TCPE) (TCPE = tetrakis(4-carboxyphenyl)ethylene) and Mg(H2DHBDC) (H2DHBDC2– = 2,5-dihydroxybenzene-1,4-dicarboxylate) function as selective sensors for ammonia at 100 °C, although neither shows NH3 selectivity at room temperature. Variable-temperature diffuse-reflectance infrared spectroscopy, fluorescence spectroscopy, and X-ray crystallography are coupled with density-functional calculations to interrogate the temperature-dependent guest–framework interactions and the preferential analyte binding in each material. These results describe a heretofore
AB - We show that fluorescent molecules incorporated as ligands in rigid, porous metal–organic frameworks (MOFs) maintain their fluorescence response to a much higher temperature than in molecular crystals. The remarkable high-temperature ligand-based fluorescence, demonstrated here with tetraphenylethylene- and dihydroxyterephthalate-based linkers, is essential for enabling selective and rapid detection of analytes in the gas phase. Both Zn2(TCPE) (TCPE = tetrakis(4-carboxyphenyl)ethylene) and Mg(H2DHBDC) (H2DHBDC2– = 2,5-dihydroxybenzene-1,4-dicarboxylate) function as selective sensors for ammonia at 100 °C, although neither shows NH3 selectivity at room temperature. Variable-temperature diffuse-reflectance infrared spectroscopy, fluorescence spectroscopy, and X-ray crystallography are coupled with density-functional calculations to interrogate the temperature-dependent guest–framework interactions and the preferential analyte binding in each material. These results describe a heretofore
U2 - 10.1021/ja407778a
DO - 10.1021/ja407778a
M3 - Article
SP - 13326
EP - 13329
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
ER -