Roles of initial condition and vortex pairing in jet noise

J. E. Bridges, A. K.M.F. Hussain

Research output: Contribution to journalArticlepeer-review

123 Scopus citations

Abstract

This is a study of the effect of initial condition on sound generated by vortex pairing in a low Mach number, cold air jet (0·15 ≤ M ≤ 0·35). Data has been taken, both flow velocity fields and sound pressure far fields, in a quality anechoic facility, with careful documentation of the effect of initial condition on the sound field of jets of two different geometries (i.e., circular and elliptic). Explanations are presented for most of the observed effects by applying Möhring's theory of vortex sound to vortex filament models of coherent structures in the jets. The explanations also draw upon experience with coherent structure dynamics. The sound source of interest here is that associated with the pairing of shear layer vortices. The evolution of these vortices is greatly affected by the initial condition as is their resultant sound field. The elliptic jets with laminar boundary layers show azimuthal directivity, namely, sound pressure levels in the minor axis plane were greater than in the major axis plane. This difference decreases as the nozzle boundary layer undergoes natural transition with increasing jet speed. When the nozzle boundary layer is tripped, making it fully turbulent and removing the shear layer mode of pairing, the elliptic jet sound fields become nearly axisymmetric. What appears to be the most acoustically active phase of vortex pairing has been modeled, and the resulting sound field calculated for the circular jet. Supporting evidence is found in the experimental data for the validity of this model. The model explains the connection between the initial condition and the far field sound of jets. Interestingly, a general result of Möhring's theory is that motions of vortex rings (of any arbitrary shape) can produce only axisymmetric sound fields if the rings remain in a plane. This implies that the observed asymmetric directivity of the laminar elliptic jet sound field must be due to non-planar ring motions of the vortical structures. The primary contribution of this paper is to examine quantitatively the role of vortex pairing in the production of jet noise; the results are used to reemphasize that "pairing noise" cannot be dominant in most practical jet sound fields, contrary to claims by other researchers.

Original languageEnglish
Pages (from-to)289-311
Number of pages23
JournalJournal of Sound and Vibration
Volume117
Issue number2
DOIs
StatePublished - Sep 8 1987

Fingerprint

Dive into the research topics of 'Roles of initial condition and vortex pairing in jet noise'. Together they form a unique fingerprint.

Cite this