Risk-based analysis of femoral stem considering uncertainty in its design parameters

Godlove Wanki, Stephen Ekwaro-Osire, João Paulo Dias, Americo Cunha

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The number of young people getting total hip arthroplasty surgery is on the rise and studies have shown that the average number of perfect health years after such surgery is being reduced to about 9 years; this is because of complications which can lead to the failure of such implants. Consequently, such failures cause the implant not to last as long as required. The uncertainty in design parameters, loading, and even the manufacturing process of femoral stems, makes it important to consider uncertainty quantification and probabilistic modeling approaches instead of the traditional deterministic approach when designing femoral stems. This paper proposes a probabilistic analysis method which considers uncertainties in the design parameters of femoral implants to determine its effect on the implant stiffness. Accordingly, this method can be used to improve the design reliability of femoral stems. A simplified finite element model of a femoral stem was considered and analyzed both deterministically and probabilistically using Monte Carlo simulation. The results showed that uncertainties in design parameters can significantly affect the resulting stiffness of the stem. This paper proposes an approach that can be considered a potential solution for improving, in general, the reliability of hip implants and the predicted stiffness values for the femoral stems so as to better mitigate the stress shielding phenomenon.

Original languageEnglish
Title of host publicationFrontiers in Biomedical Devices, BIOMED - 2019 Design of Medical Devices Conference, DMD 2019
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791841037
DOIs
StatePublished - Jan 1 2019
Event2019 Design of Medical Devices Conference, DMD 2019 - Minneapolis, United States
Duration: Apr 15 2019Apr 18 2019

Publication series

NameFrontiers in Biomedical Devices, BIOMED - 2019 Design of Medical Devices Conference, DMD 2019

Conference

Conference2019 Design of Medical Devices Conference, DMD 2019
Country/TerritoryUnited States
CityMinneapolis
Period04/15/1904/18/19

Keywords

  • Femoral stem
  • Finite element analysis
  • Monte Carlo simulation
  • Probability
  • Stiffness reduction

Fingerprint

Dive into the research topics of 'Risk-based analysis of femoral stem considering uncertainty in its design parameters'. Together they form a unique fingerprint.

Cite this