Residual strength prediction for aircraft panels with Multiple Site Damage, using the "EPFEAM" for stable crack growth analysis

C. R. Pyo, H. Okada, S. N. Atluri

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

In this paper, a new analytical method for solving stable crack propagation problems in a ductile panel with a row of cracks, is presented. The main purpose of the present study is to estimate the maximum load carrying capacity of such panels accurately. The so called Elastic Plastic Finite Element Alternating Method (Pyo et al. (1994) was extended to account for the propagating cracks. The crack propagation algorithm utilizes the analytic crack solution to release the stresses ahead the crack tip. The Tinfεsup*integral is employed as the crack extension criterion. This integral parameter accounts for the near tip stress-strain singularity and its critical values for crack propagation can be extracted from the P-Δa curve of single cracked specimen case. The present method can be applied to the problems of the fuselage skin of aging airplanes, in which a row of cracks develop (MSD; Multiple Site Damage) from rivet holes. The load carrying capacity of such damaged structure reduces by a considerable amount. In order to predict the behavior near the critical load, one must account for plastic deformation, if the material is ductile. Furthermore, the maximum load carried by the structure is often reached after some amount of crack propagation. In this paper, a series of analyses have been conducted and their results compare with the available experimental data.

Original languageEnglish
Pages (from-to)190-196
Number of pages7
JournalComputational Mechanics
Volume16
Issue number3
DOIs
StatePublished - Jun 1995

Fingerprint

Dive into the research topics of 'Residual strength prediction for aircraft panels with Multiple Site Damage, using the "EPFEAM" for stable crack growth analysis'. Together they form a unique fingerprint.

Cite this