Representations of the Kauffman bracket skein algebra of the punctured torus

Jea Pil Cho, Rəzvan Gelca

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

We describe the action of the Kauffman bracket skein algebra on some vector spaces that arise as relative Kauffman bracket skein modules of tangles in the punc- tured torus. We show how this action determines the Reshetikhin-Turaev representation of the punctured torus. We rephrase our results to describe the quantum group quantiza- tion of the moduli space of at SU(2)-connections on the punctured torus with fixed trace of the holonomy around the boundary.

Original languageEnglish
Pages (from-to)45-55
Number of pages11
JournalFundamenta Mathematicae
Volume225
Issue number1
DOIs
StatePublished - 2014

Keywords

  • Kauffman bracket
  • Moduli spaces of connections
  • Skein modules

Fingerprint Dive into the research topics of 'Representations of the Kauffman bracket skein algebra of the punctured torus'. Together they form a unique fingerprint.

Cite this