TY - JOUR
T1 - Redox properties of a thioredoxin-like Arabidopsis protein, AtTDX
AU - Kim, Sang
AU - Chi, Y. H.
AU - Lee, Jeffrey
AU - Schlesinger, S. R.
AU - Moghaddam, Masoud Zabet
AU - Chung, J. S.
AU - Knaff, David
AU - Kim, Sang
AU - Kim, Sang
PY - 2010/12
Y1 - 2010/12
N2 - AtTDX is an enzyme present in Arabidopsis thaliana which is composed of two domains, a thioredoxin (Trx)-motif containing domain and a tetratricopeptide (TPR)-repeat domain. This enzyme has been shown to function as both a thioredoxin and a chaperone. The midpoint potential (E(m)) of AtTDX was determined by redox titrations using the thiol-specific modifiers, monobromobimane (mBBr) and mal-PEG. A NADPH/Trx reductase (NTR) system was used both to validate these E(m) determination methods and to demonstrate that AtTDX is an electron-accepting substrate for NTR. Titrations of full-length AtTDX revealed the presence of a single two-electron couple with an E(m) value of approximately -260 mV at pH 7.0. The two cysteines present in a typical, conserved Trx active site (WCGPC), which are likely to play a role in the electron transfer processes catalyzed by AtTDX, have been replaced by serines by site-directed mutagenesis. These replacements (i.e., C304S, C307S, and C304S/C307S) resulted in a
AB - AtTDX is an enzyme present in Arabidopsis thaliana which is composed of two domains, a thioredoxin (Trx)-motif containing domain and a tetratricopeptide (TPR)-repeat domain. This enzyme has been shown to function as both a thioredoxin and a chaperone. The midpoint potential (E(m)) of AtTDX was determined by redox titrations using the thiol-specific modifiers, monobromobimane (mBBr) and mal-PEG. A NADPH/Trx reductase (NTR) system was used both to validate these E(m) determination methods and to demonstrate that AtTDX is an electron-accepting substrate for NTR. Titrations of full-length AtTDX revealed the presence of a single two-electron couple with an E(m) value of approximately -260 mV at pH 7.0. The two cysteines present in a typical, conserved Trx active site (WCGPC), which are likely to play a role in the electron transfer processes catalyzed by AtTDX, have been replaced by serines by site-directed mutagenesis. These replacements (i.e., C304S, C307S, and C304S/C307S) resulted in a
M3 - Article
SP - 2213
EP - 2221
JO - Biochim. Biophys. Acta
JF - Biochim. Biophys. Acta
ER -