Recent progress in developing Li2S cathodes for Li–S batteries

Shiqi Li, Dan Leng, Wenyue Li, Long Qie, Zhihua Dong, Zhiqun Cheng, Zhaoyang Fan

Research output: Contribution to journalReview articlepeer-review

15 Scopus citations

Abstract

With its unique features, lithium sulfide (Li2S) has been investigated as the cathode material for next-generation rechargeable batteries. Even though Li2S itself cannot solve all the problems faced by lithium-sulfur batteries (LSBs) and it may also introduce new issues, it does provide new opportunities. As the fully lithiated state of sulfur, Li2S offers the prospect of lithium-metal-free anodes and will also alleviate the volume expansion issues otherwise occurred in the sulfur cathode. Perhaps a most radical change when substituting sulfur with Li2S lies at the high-temperature process ability of the latter, thus opening new avenues to construct rationally designed electrodes. Despite sharing certain similarities with sulfur-based LSB, Li2S-based has its own opportunities and challenges in term of material synthesis, electrode fabrication, cell construction, and electrochemical behavior. To advance its state of the art, this review article discusses the current understandings on the initial Li2S activation process, which plays a crucial role in guiding Li2S nanostructure design and fabrication. With this leading thread, the article surveys impactful works on producing Li2S nanoparticles, encapsulating Li2S nanoparticles, simultaneously producing and encapsulating Li2S nanoparticles, and fabricating Li2S cathodes, followed by constructing lithium-metal-free LSBs. The pros and cons of different methods and the associated electrochemical behaviors are highlighted. Throughout, we call out the important research opportunities and challenges, both scattered out in the survey and aggregated in our conclusion perspective on future works, towards the fundamental understanding and practical development of Li2S-based LSBs.

Original languageEnglish
Pages (from-to)279-296
Number of pages18
JournalEnergy Storage Materials
Volume27
DOIs
StatePublished - May 2020

Keywords

  • LiS cathodes
  • Lithium anode
  • Lithium-sulfur batteries
  • Shuttle effect

Fingerprint Dive into the research topics of 'Recent progress in developing Li<sub>2</sub>S cathodes for Li–S batteries'. Together they form a unique fingerprint.

Cite this