Reaction kinetics and combustion dynamics of I4O9 and aluminum mixtures

Dylan K. Smith, Michelle L. Pantoya, Jeffrey S. Parkey, Mehmet Kesmez

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Tetraiodine nonoxide (I4O9) has been synthesized using a dry approach that combines elemental oxygen and iodine without the introduction of hydrated species. The synthesis approach inhibits the topochemical effect promoting rapid hydration when exposed to the relative humidity of ambient air. This stable, amorphous, nano-particle material was analyzed using differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) and showed an exothermic energy release at low temperature (i.e., 180 °C) for the transformation of I4O9 into I2O5. This additional exothermic energy release contributes to an increase in overall reactivity of I4O9 when dry mixed with nano-aluminum (Al) powder, resulting in a minimum of 150% increase in flame speed compared to Al + I2O5. This study shows that as an oxidizer, I4O9 has more reactive potential than other forms of iodine(V) oxide when combined with Al, especially if I4O9 can be passivated to inhibit absorption of water from its surrounding environment.

Original languageEnglish
Article numbere54661
JournalJournal of Visualized Experiments
Volume2016
Issue number117
DOIs
StatePublished - Nov 7 2016

Keywords

  • Aluminum combustion
  • Biocidal agent
  • DSC
  • Engineering
  • Flame speed
  • IO
  • Iodine compounds
  • Iodine gas
  • Issue 117
  • Reactivity
  • TGA
  • Tetraiodine nonoxide

Fingerprint Dive into the research topics of 'Reaction kinetics and combustion dynamics of I<sub>4</sub>O<sub>9</sub> and aluminum mixtures'. Together they form a unique fingerprint.

Cite this