Protective networks for high voltage power supplies for pulsed power loads

Michael G. Giesselmann, Argenis Bilbao

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review


We are reporting on a comprehensive study on protective de-coupling networks for High Voltage (HV) pulsed power charging supplies. Typically HV power supplies charge large capacitor banks [1, page 3], [2, page 4], which are rapidly discharged into a pulsed power load. Even during a normal discharge, this can put severe stress on the power supply if it is not properly decoupled from the load. A fault at the load capacitor such as a flashover resulting in a ringing discharge with voltage reversal would put even more stress on the power supply, since the load capacitor could discharge through the rectifier diodes in forward direction. In such a case the output rectifier of the power supply could be instantaneously destroyed. Protective networks between the power supply and the load can prevent such damage but may limit the efficiency as well as the available power output and rep-rate of the HV power supply. We are reporting on a number of protective networks including combinations of resistors, inductors, and diodes that can be placed between the output of the power supply and the load. We are also considering the effects of parasitics and the surge I2t action integral [3, Page 20] of the output rectifiers of the power supply to arrive at guidelines for optimal system protection.

Original languageEnglish
Title of host publication2015 IEEE Pulsed Power Conference, PPC 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781479984039
StatePublished - Oct 12 2015
EventIEEE Pulsed Power Conference, PPC 2015 - Austin, United States
Duration: May 31 2015Jun 4 2015

Publication series

NameDigest of Technical Papers-IEEE International Pulsed Power Conference


ConferenceIEEE Pulsed Power Conference, PPC 2015
Country/TerritoryUnited States


  • Capacitors
  • Discharges (electric)
  • Generators
  • Inductors
  • Power supplies
  • Rectifiers
  • Resistors


Dive into the research topics of 'Protective networks for high voltage power supplies for pulsed power loads'. Together they form a unique fingerprint.

Cite this