Probabilistic Prediction of Pedestrian Crossing Intention Using Roadside LiDAR Data

Junxuan Zhao, Yinfeng Li, Hao Xu, Hongchao Liu

Research output: Contribution to journalArticlepeer-review

22 Scopus citations


Pedestrians are vulnerable road users that need proactive protection. While both autonomous and connected vehicle technologies aim to deliver greater safety benefits, current designs heavily rely on vehicle-based or on-board sensors and lack strategic real-time interactions with pedestrians who do not have any communication means. As pedestrians are passively protected by the system, they might be put into hazardous situations when vehicle-mounted sensors fail to detect their presence. This paper is part of ongoing research that uses roadside light detection and ranging (LiDAR) sensors to develop a human-in-the-loop system that brings pedestrians into the connected environment. To proactively protect pedestrians, accurate prediction of their intention for crossings at locations, such as unsignalized intersections and street mid-blocks is critical, and this paper presents a modified Naïve Bayes approach for this purpose. It features a probabilistic approach to overcoming the common deficiencies in deterministic methods and provides valuable comparisons between feature-based data processing methods, such as artificial neural network (ANN) and model-based Naïve Bayes approach. A case study was conducted by using a low-cost 16-line LiDAR sensor installed at the roadside. Pedestrians' crossing intention was predicted at a range of 0.5-3 s before actual crossings. The results satisfactorily demonstrated the properties of the modified Naïve Bayes model, as well as its higher flexibility, compared with the ANN approaches in practice.

Original languageEnglish
Article number8758964
Pages (from-to)93781-93790
Number of pages10
JournalIEEE Access
StatePublished - 2019


  • Confidence level
  • Naïve Bayes
  • pedestrian crossing intention
  • roadside LiDAR


Dive into the research topics of 'Probabilistic Prediction of Pedestrian Crossing Intention Using Roadside LiDAR Data'. Together they form a unique fingerprint.

Cite this