Power synthesis at 110-GHz frequency based on discrete sources

Jiaqi Zhao, Zhongbo Zhu, Wanzhao Cui, Kuiwen Xu, Bin Zhang, Dexin Ye, Changzhi Li, Lixin Ran

Research output: Contribution to journalArticlepeer-review

4 Scopus citations


Terahertz technology is one of the research fronts in the microwave society. Among many technical challenges, achieving high-power terahertz radiation has been attracting many efforts. In this paper, we investigate the possibility of power synthesis at low-end frequencies of the terahertz gap based on discrete sources. We show that by applying precision digital phase control, such a power synthesis can be achieved, overcoming the difficulty of phase alignment at these frequencies. For demonstration, we implement a 110-GHz prototype system employing solid-state impact avalanche and transit time diodes. Using a simulation- and measurement-based design methodology, the impedance matching of the designed cavity is able to be simultaneously obtained at both the RF bias and the 110-GHz frequency without using any absorbing material. Detailed design, simulation, and measurement of the prototype are introduced and the experimental results comply well with analytical expectations. Analysis shows that with increased wide digital bit width, the proposed approach is able to provide sufficient phase control precision, making it possible to be used in the power synthesis applications at low terahertz frequencies.

Original languageEnglish
Article number7086105
Pages (from-to)1633-1644
Number of pages12
JournalIEEE Transactions on Microwave Theory and Techniques
Issue number5
StatePublished - May 1 2015


  • Phase control
  • phase-locked loop (PLL)
  • power synthesis
  • terahertz


Dive into the research topics of 'Power synthesis at 110-GHz frequency based on discrete sources'. Together they form a unique fingerprint.

Cite this