TY - JOUR
T1 - Potential effects of climate change and rising CO2 on ecosystem processes in northeastern U.S. forests
AU - Ollinger, S V
AU - Goodale, C L
AU - Hayhoe, Katharine
AU - Jenkins, J P
PY - 2007/9/26
Y1 - 2007/9/26
N2 - Forest ecosystems represent the dominant form of land cover in the northeastern United States and are heavily relied upon by the region’s residents as a source of fuel, fiber, structural materials, clean water, economic vitality, and recreational opportunities. Although predicted changes in climate have important implications for a number of ecosystem processes, our present understanding of their long-term effects is poor. In this study, we used the PnET-CN model of forest carbon (C), nitrogen (N) and water cycling to evaluate the effects of predicted changes in climate and atmospheric carbon dioxide (CO2) on forest growth, C exchange, water runoff, and nitrate () leaching at five forest research sites across the northeastern U.S. We used four sets of statistically downscaled climate predictions from two general circulation models (the Hadley Centre Coupled Model, version 3 and the Parallel Climate Model) and two scenarios of future CO2 concentrations. A series of model experiments wa
AB - Forest ecosystems represent the dominant form of land cover in the northeastern United States and are heavily relied upon by the region’s residents as a source of fuel, fiber, structural materials, clean water, economic vitality, and recreational opportunities. Although predicted changes in climate have important implications for a number of ecosystem processes, our present understanding of their long-term effects is poor. In this study, we used the PnET-CN model of forest carbon (C), nitrogen (N) and water cycling to evaluate the effects of predicted changes in climate and atmospheric carbon dioxide (CO2) on forest growth, C exchange, water runoff, and nitrate () leaching at five forest research sites across the northeastern U.S. We used four sets of statistically downscaled climate predictions from two general circulation models (the Hadley Centre Coupled Model, version 3 and the Parallel Climate Model) and two scenarios of future CO2 concentrations. A series of model experiments wa
M3 - Article
SP - 467
EP - 485
JO - Mitigation and Adaptation Strategies for Global Change
JF - Mitigation and Adaptation Strategies for Global Change
SN - 1381-2386
ER -